請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36959完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江俊斌(Chun-Pin Chiang),郭英雄(Ying-Shiung Kuo) | |
| dc.contributor.author | Ping-Chin TU | en |
| dc.contributor.author | 杜秉直 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:24:54Z | - |
| dc.date.available | 2005-08-15 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-15 | |
| dc.identifier.citation | Ali SM, Olivo M. Bio-distribution and subcellular localization of Hypericin and its role in PDT induced apoptosis in cancer cells. Int J Oncol 2002; 21: 531–40.
Adams JM, Cory S. Apoptosomes: engines for caspase activation. Cur Opi Cell Biol 2002; 14: 715–20. Alekesander S, Mariusz A, Aleksandra KK, Sebastian M, Leszek I. Photodynamic therapy (PDT) using topically applied 5-animolevulinic acid (ALA) for the treatment of oral leukoplakia. J Oral Pathol Med 2003; 32: 330-6. Ackroyd R, Brown NJ, Davis MF, Stephenson TJ, Marcus SL, Stoddard CJ Photodynamic therapy for dysplastic Barrett’s oesophagus: a prospective, double blind, randomized, placebo controlled trial. Gut 2000; 47(5): 612–7. Biel MA. Photodynamic therapy and the treatment of head and neck neoplasia. Laryngoscope 1998; 108: 1259–68. Boise LH, Gottschalk AR, Quintans J, Thompson CB. Bcl-2 and Bcl-2–related proteins in apoptosis regulation. Curr Top Microbiol Immunol 1995; 200: 107-21. Bottomley SS, Muller-Eberhard U. Pathophysiology of heme synthesis [review]. Semin Hematol 1988; 25: 282–302. Barr H, Boules PB, MacRobert AJ, Tralau CJ, Phillips D, Bown SG. Comparison of lasers for photodynamic therapy with a phthalocyanine photosensitizer. Lasers Med Sci 1989; 4: 7–12. Birchall MA, Schock E, Harmon BV, Gobe G. Apoptosis, mitosis, PCNA and bcl-2 in normal, leukoplakic and malignant epithelia of the human oral cavity: prospective, in vivo study. Oral Oncology 1997; 33: 419-25 Bodner K, Bodner-Adler B, Wierrani F, Kubin A, Szolts-Szolts J, Spangler B. Cold-knife conization versus photodynamic therapy with topical 5-aminolevulinic acid (5-ALA) in cervical intraepithelial neoplasia (CIN) II with associated human papillomavirus infection: a comparison of preliminary results. Anticancer Res 2003; 23(2C):1785–8. Berger AP, Steiner H, Stenzl A, Akkad T, Bartsch G, Holtl L. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer: a single-center study. Urology 2003; 61(2): 338–41. Cancer registry annual report in Taiwan area. Department of Health, The Executive Yuan, Taiwan, 2001. Chen HM, Chen CT, Yang H, Kuo YP, Kuo YS, Lan WH, Wang YP, Tsai T, Chiang CP. Successful treatment of oral verrucous hypersia with topical 5-aminolevulinic acid-mediated photodynamic therapy. Oral Oncology 2004; 40: 630-37 Colin Hopper. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol 2000; 1: 212-19 Cairnduff F, Stringer MR, Hudson EJ, Ash DV, Brown SB. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. Br J Cancer 1994; 69: 605–8. Cowed PA, Grace JR, Forbes IJ. Comparison of the efficacy of pulsed and continuous-wave red laser light in induction of photocytotoxicity by hematoporphyrin derivative. Photochem Photobiol 1984; 39: 115–7. Chaloupka R, Petit PX, Israel N, Sureau F. Over-expression of Bcl-2 does not protect cells from hypericin photo-induced mitochondrial membrane depolarization, but delays subsequent events in the apoptotic pathway. FEBS Lett 1999; 462: 295– 301. Carthy CM, Granville DJ, Jiang H, Levy JG, Rudin CM, Thompson CB, McManus BM, Hunt DW. Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab Invest 1999; 76: 953–65. Christiane K et al. Abnormalities of molecular regulators of proliferation and apoptosis in carcinoma of oral cavity and oropharynx. Auris Nasus Larynx 2002; 29: 165-74. Christian S, Gustavo B, Corinne A, Udo L. Prognostic significance of apoptosis and associated factors in oral squamous cell carcinoma. Virchows Arch 2000; 436: 102-8. Chen HM, Chen CT, Yang H, Kuo YP, Kuo YS, Lan WH, Wang YP, Tsai T, Chiang CP. Sussessful treatment of oral verrucous hyperplasia with topical 5-aminolevulinic acid-mediated photodynamic therapy. Oral Oncology 2004; 40: 630-37. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst 1998; 90:889–905. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3:380–87. Elder GH, Evans JO. Evidence that the coproporphyrinogen oxidase activity of rat liver is situated in the intermembrane space of mitochondria. Biochem J 1978; 172: 345–47. Eid H, Gulyas M, Geczi L, Bodrogi I, Institoris E, Bak M. Expression of bcl-2 in testicular carcinoma: correlation with tumor progression and MDR1/Pgp. Cancer 1998; 83: 331–36. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol 1991; 54: 659. Friesen SA, Hjortland GO, Madsen SJ, Hirschberg H, Engebraten O, Nesland JM, Peng Q. 5-Aminolevulinic acidbased photodynamic detection and therapy of brain tumors. Int J Oncol 2002; 21:577–82. Fan KF, Hopper C, Speight PM, Buonaccorsi G, MacRobert AJ, Bown SG. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer 1996; 78: 1374–83. Fromm D, Kessel D, Webber J. Feasibility of photodynamic therapy using endogenous photosensitization for colon cancer. Arch Surg 1996; 131:667–69. Ferreira GC, Andrew TL, Karr SW, Dailey HA. Organization of the terminal two enzymes of the heme biosynthetic pathway: orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J Biol Chem 1988; 263: 3835–39. Fritsch C, Verwohlt B, Bolsen K, Ruzicka T, Goerz G. Kinetics of erythrocyte and plasma porphyrins and excretion of delta-aminolevulinic acid, porphobilinogen and porphyrins in patients treated with topical delta-aminolevulinic acid photodynamic therapy. 6th IPA meeting, 1996. Abstract book. Fijan S, Ho¨nigsmann H, Ortel B. Photodynamic therapy of epithelial skin tumours using delta-aminolevulinic acid and desferrioxamine. Br J Dermatol 1995; 133: 282–88. Friedman M, Grey P, Venkatesan TK, Bloch I, Chawla P, Caldarelli DD, et al. Prognostic significance of Bcl-2 expression in localized squamous cell carcinoma of the head and neck. Ann Otol Rhinol Laryngol 1997; 106: 445–50. Flohil CC, Janssen PA, Bosman FT. Expression of bcl-2 protein in hyperplastic polyps, adenomas, and carcinomas of the colon. J Pathol 1996; 178: 393 Gardner LC, Smith SJ, Cox TM. Biosynthesis of deltaaminolevulinic acid and the regulation of heme formation by immature erythroid cells in man. J Biol Chem 1991; 266: 22010–18. Goff BA, Bachor R, Kollias N, Hasan T. Effects of photodynamic therapy with topical application of 5-aminolevulinic acid on normal skin of hairless guinea pigs. J Photochem Photobiol B 1992; 15: 239–51. Gaullier JM, Berg K, Peng Q, Anholt H, Selbo PK, Ma LM, et al. The use of esters of 5-aminolevulinic acid to improve photodynamic therapy on cells in culture. Cancer Res 1997; 57: 1481–86. Grandchamp B, Phung N, Nordmann Y. The mitochondrial localization of coproporphyrinogen III oxidase. Biochem J 1978; 176: 97–102. Green DR, Evan GI. A matter of life and death. Cancer Cell 2002; 1: 19–30. Granville DJ, Jiang H, An MT, Levy JG, McManus BM, Hunt DW. Bcl-2 overexpression blocks caspase activation and downstream apoptotic events instigated by photodynamic therapy. Br J Cancer 1999; 79: 95–100. Granville DJ, Jiang H, An MT, Levy JG, McManus BM, Hunt DW. Overexpression of Bcl-X(L) prevents caspase-3-mediated activation of DNA fragmentation factor (DFF) produced by treatment with the photochemotherapeutic agent BPD-MA, FEBS Lett 1998; 422: 151– 54. Gazzaniga P, Gradilone A, Vercillo R, Gandini O, Silvestri I, Napolitano M, et al. Bcl-2/bax mRNA expression ratio as prognostic factor in low-grade urinary bladder cancer. Int J Cancer 1996; 69: 100–4. Grant WE, Hopper C, MacRobert AJ, Speight PM, Bown SG. Photodynamic therapy of oral cancer: photosensitization with systemic aminolaevulinic acid. Lancet 1993; 342(7): 147–8. Ho PS, Ko YC, Yang YH, Shieh TY, Tsai CC. The incidence of oropharyngeal cancer in Taiwan: An endemic betel quid chewing area. J Oral Pathol Med 2002; 31: 213–19. Hattowska H. Neoplasms of Oral Cavity. Warszawa: Sanmedia, 1994. Hansen LS, Olson JA, Silverman S. Proliferative verrucous leukoplakia: a long term study of thirty patients. Oral Surg Oral Med Oral Pathol 1985; 60: 285-98. Hockenbery DM. Bcl-2 in cancer, development and apoptosis. J Cell Sci 1994; 18: 51–5. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992; 55: 145–57. Huber RM, Gamarra F, Leberig A, Stepp H, Rick K, Baumgatner R. Inhaled 5-aminolevulinic acid (ALA) for photodynamic diagnosis and early detection of bronchial tumors: first experience in patients. In: Abstract book of 6th IPA meeting, 1996. Hisazumi H, Naito K, Misakii T, Koshida K, Yamamoto H. An experimental study of photodynamic therapy using a pulsed gold vapor laser. In: Jori G, Perria C. Photodynamic therapy of tumors and other diseases. Padova: Libreria Progetto Editore, 1985: 252–54. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–76. He J, Agarwal ML, Larkin HE, Friedman LR, Xue LY, Oleinick NL. The induction of partial resistance to photodynamic therapy by the protooncogene BCL-2, Photochem Photobiol 1996; 64: 845–52. Jordan RCK, Catzavelos GC, Barrett AW. Differential expression of bcl-2 and Bax in squamous cell carcinoma of the oral cavity. Oral Oncol Eur J Cancer 1996; 32: 394 Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 1995; 24: 450–53. Kwan HW. A statistical study on oral carcinomas in Taiwan with emphasis on the relationship with betel nut chewing: A preliminary report. Taiwan I Hsueh Hui Tsa Chih 1976; 75: 497–505. Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principle and present clinical experience. J Photochem Photobiol B 1990; 6: 143–48. Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B 1992; 14: 275–92. Kennedy JC, Marcus SL, Pottier RH. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): Mechanisms and clinical results. J Clin Laser Med Surg 1996; 14: 289–304. Kamuhabwa AR, Agostinis PM, D’Hallewin MA, Baert L, PA de Witte. Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells. Photochem Photobiol 2001; 74: 126–32. Kitada S, Krajewski S, Miyashita T, Krajewska M, Reed JC. Gamma-radiation induces upregulation of Bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 1996; 12:187–92. Kondo M, Hirota N, Takaoka T, Kajiwara M. Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell line of rats. Cell Biol Toxicol 1993; 9: 95–105. Kriegmair M, Baumgartner R, Knuechel R, Stepp H, Hofstadter F, Hofstetter A. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 1996; 155: 105–10. Kimel S, Svaasand LO, Hammer-Wilson M, Gottfried V, Cheng S, Svaasand E, et al. Demonstration of synergistic effects of hyperthemia and photodynamic therapy using the chick chorioallantoic membrane model. Lasers Surg Med 1992; 12: 432–40. Krieser RJ, White K. Engulfment mechanism of apoptotic cells. Curr Opin Cell Biol 2002; 14: 734–38. Kim HR, Luo Y, Li G, Kessel D. Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection Cancer Res 1999; 59: 3429–32. Kessel, Castelli M. Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response. Photochem Photobiol 2002; 74: 318–22. Kessel, Castelli M, Reiners JJ Jr. Apoptotic response to photodynamic therapy versus the Bcl-2 antagonist HA14-1. Photochem Photobiol 2002; 76: 314–19. Keshgegian AA, Johnston E, Cnaan A. Bcl-2 oncoprotein positivity and high MIB-1 (Ki-67) proliferative rate are independent predictive markers for recurrence in prostate carcinoma. Am J Clin Pathol 1998; 110:443–49. Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius VM, Niskanen E, et al. Reduced expression of proapoptotic gene Bax is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 1995; 55: 4471–78. Koshida Y, Saegusa M, Okayasu I. Apoptosis, cell proliferation and expression of Bcl-2 and Bax in gastric carcinomas: immunohistochemical and clinicopathological study. Br J Cancer 1997; 75: 367–73. Kubler A, Haase T, Rheinwald M, Barth T, Muhling J. Treatment of oral leukoplakia by topical application of 5-aminolevulinic acid. Int J Oral Maxillofac Surg 1998; 27(6): 466–69. Luo Y, Kessel D. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 1997; 66: 479–83. Leibovici L, Schoenfeld N, Yehoshua HA, Mamet R, Rakowski E, Shindel A, et al. Activity of porphobilinogen deaminase in peripheral blood mononuclear cells of patients with metastatic cancer. Cancer 1988; 62:2297–300. Lawen A. Apoptosis—an introduction. Bioessays 2003; 25: 888–96. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–57. Lipponen P, Pietilainen T, Kosma VM, Aaltomaa S, Eskelinen M, Syrjanen K. Apoptosis suppressing protein bcl-2 is expressed in well-differentiated breast carcinomas with favourable prognosis. J Pathol 1995; 177: 49–55. Messmann H, Mlkvy P, Buonaccorsi G, Davies CL, MacRobert AJ, Bown SG. Enhancement of photodynamic therapy with 5-aminolaevulinic acid-induced porphyrin photosensitization in normal rat colon by threshold and light fractionation studies. Br J Cancer 1995; 72: 589–94. Mlkvy P, Messmann H, Regula J, Conio M, Pauer M, Millson CE, MacRobert AJ, Bown SG. Photodynamic therapy for gastrointestinal tumors using three photosensitizers—ALA induced PPIX, photofrin and mTHPC. A pilot study. Neoplasma 1998; 45:157–61. Miyashita T, Reed JC. Bcl-2 gene transfer increases relative resistance of S49.1 and WEH17.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 1992; 52: 5407–11. May BK, Bawden MJ. Control of heme biosynthesis in animals [review]. Semin Hematol 1989; 26: 150–56. Moore MR, McColl KEL, Rimigton C, Goldberg A. Disorders of porphyrin metabolism. New York: Plenum Press, 1987. Morton CA, Whitehurst C, Moseley H, Moore JV, Mackie RM. Development of an alternative light source to lasers for photodynamic therapy. 1. Clinical evaluation in the treatment of pre-malignant non-melanoma skin cancer. Lasers Med Sci 1995; 10: 165–71. Moan J, Sommer S. Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. Cancer Res 1985; 45: 1608–10. Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991; 53: 549–53. Marx D, Binder C, Meden H, Lenthe T, Ziemek T, Hiddemann T, et al. Differential expression of apoptosis associated genes bax and bcl-2 in ovarian cancer. Anticancer Res 1997; 17: 2233–40. Nauta JM, van Leengoed HL, Star WM, Roodenburg JL, Witjes MJ, Vermey A. Photodynamic therapy of oral cancer. A review of basic mechanisms and clinical applications. Eur J Oral Sci 1996; 104: 69–81. Naoka T, Shiro M, Kellchi S, Kyoko I, Seizaburo S. Expression of apoptotic signaling proteins in leukoplakia and oral lichen planus: quantitative and topographical studies. J Oral Pathol Med 2000; 29: 385-93 Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–19. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–92. Orenstein A, Kostenich G, Tsur H, Roitman L, Ehrenberg B, Malik Z. Photodynamic therapy of human skin tumors using topical application of 5-aminolevulinic acid, DMSO and EDTA. In: Brault D, Jori G, Moan J, Ehrenberg B. Photodynamic therapy of cancer II. Proc SPIE 1995; 2325: 100–5. Ohbu M, Saegusa M, Kobayashi N, Tsukamoto H, Mieno H, Kakita A, et al. Expression of bcl-2 protein in esophageal squamous cell carcinomas and its association with lymph node metastasis. Cancer 1997; 79: 1287–93. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy: Principles and experimental research. Photochem Photobiol 1997; 65: 235–251. Peng Q, Warloe T, Moan J, Heyerdahl H, Steen HB, Giercksky K-E, Nesland JM. ALA derivative-induced protoporphyrin IX build-up and distribution in human nodular basal cell carcinoma. Photochem Photobiol 1995; 61: 82S. Peng Q, Moan J, Warloe T, Iani V, Steen HB, Bjørseth A, Nesland JM. Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin. J Photochem Photobiol B 1996; 34: 95–6. Peng Q, Warloe T, Moan J, Steen H, Giercksky KE, Nesland JM. Localization of ALA-induced porphyrins in normal and malignant tissues of mice, dogs and patients. Conference on photosensitization and photochemotherapy of cancer, Oslo, March 16–17, 1993. Abstract book, pp. S4. Parenti AR, Rugge M, Horng Shiao Y, et al: bcl-2 and p53 immunophenotypes in pre-invasive, early and advanced oesophageal squamous cancer. Histopathology 1997; 31: 430 Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6. Reed JC. Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am 1995; 9: 451–73. Ramiro D, Almeida, Bruno J, Manadas, Arselio P, Carvalho, Carlos B, Duarte. Intracellular signaling mechanisms in photodynamic therapy. Biochimica et Biophysica Acta 2004; 1704: 59-86 Regula J, MacRobert AJ, Gorchein A, Buonaccorsi GA, Thorpe SM, Spencer GM, et al. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumors using 5 aminolaevulinic acid induced protoporphyrin IX: a pilot study. Gut 1995; 36: 67–75. Rossi E, Attwood PV, Garcia-Webb P, Costin KA. Inhibition of human lymphocyte ferrochelatase activity by hemin. Biochim Biophys Acta 1990; 1038: 375–81. Ramsay JA, From L, Kahn HJ: bcl-2 protein expression in melanocytic neoplasms of the skin. Mod Pathol 1995; 8: 150. Ravi D et al. Expression of programmed cell death regulatory p53 and bcl-2 proteins in oral lesions. Cancer Letters 1996; 105: 139-46 Silverman S Jr, Gorsky M, Lozada F. Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer 1984; 53:563–68. Shibuya H, Amagasa T, Seto K. Leukoplakia – associated multiple carcinomas in patients with tongue carcinoma. Cancer 1986; 57: 843-46. Soler AM, Angell-Petersen E, Warloe T, Tausjo J, Steen HB, Moan J, Giercksky KE. Photodynamic therapy of superficial basal cell carcinoma with 5-aminolevulinic acid with dimethylsulfoxide and ethylendiaminetetraacetic acid: A comparison of two light sources. Photochem Photobiol 2000; 71:724–29. Searle J, Collins DJ, Harmon B, Kerr JF. The spontaneous occurrence of apoptosis in squamous carcinomas of the uterine cervix. Pathology 1973; 5: 163–69. Sakakura C, Sweeney EA, Shirahama T, Igarashi Y, Hakomori S, Nakatani H, et al. Overexpression of bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis. Int J Cancer 1996; 67: 101–5 Schoenfeld N, Epstein O, Lahav M, Mamet R, Shaklai M, Atsmon A. The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders. Cancer Lett 1988; 43: 43–48. Scotto AW, Chang LF, Beattie DS. The characterization and submitochondrial localization of delta-aminolevulinic acid synthase and an associated amidase in rat liver mitochondria using an improved assay for both enzymes. J Biol Chem 1983; 258: 81–90. Szeimies RM, Abels C, Fritsch C, Karrer S, Steinbach P, Baumler W, et al. Wavelength dependency of photodynamic ffects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J Invest Dermatol 1995; 105: 672–77. Srivastava M., N. Ahmad, S. Gupta, H. Mukhtar, Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF1 cells to photodynamic therapy apoptosis, J Biol Chem 2001; 276: 15481–88. Searle J, Collins DJ, Harmon B, Kerr JF. The spontaneous occurrence of apoptosis in squamous carcinomas of the uterine cervix. Pathology 1973; 5: 163–69. Sarkiss M, HsuB, El Naggar AK, et al: The clinical relevance and assessment of apoptotic cell death. Adv Anat Pathol 1996; 3: 205 Stoetzer OJ, Nussler V, Darsow M, Gullis E, Pelka-Fleischer R, Scheel U, et al. Association of bcl-2, bax, bcl-xL and interleukin-1 beta-converting enzyme expression with initial response to chemo-therapy in acute myeloid leukemia. Leukemia 1996; 10 Suppl 3: 18-22. Sieron A, Namyslowski G, Misiolek M, Adamek M, Kawczyk-Krupka A. Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and hypopharyngeal cancers. Eur Arch Oto-Rhino-Laryngol 2001; 258(7): 349–52. Tsai JC, Chiang CP, Chen HM, Huang SB, Wang CW, Lee MI, Hsu YC, Chen CT. Photodynamic therapy of oral dysplasia with topical 5-amonolevulinic acid and light-emitting diode array. Lasere Surg Med 2004; 34: 18-24. Tsai T, Hong RL, Tsai JC, Lou PJ, Ling IF, Chen CT. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med 2004; 43: 62–72. Tollenaar RA, van Krieken JH, van Slooten HJ, Bruinvels DJ, Nelemans KM, van den Broek LJ, et al. Immunohistochemical detection of p53 and Bcl-2 in colorectal carcinoma: no evidence for prognostic significance. Br J Cancer 1998; 77: 1842–47. Tjalma W, Weyler J, Goovaerts G, et al: Prognostic value of bcl-2 expression in patients with operable carcinoma of the uterine cervix. J Clin Pathol 1997; 50: 33 Thomas A, El Rouby S, Reed JC, Krajewski S, Silber R, Potmesil M, et al. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene 1996; 12: 1055-62. Toshihisa et al. Decreased expression of bax is correlated with poor prognosis in oral and oropharyngeal carcinoma. Cancer Latters 1999; 140: 81-91. Usuda J, Chiu SM, Murphy ES, Lam M, Nieminen AL, Oleinick NL. Domain dependent photodamage to Bcl-2. A membrane anchorage region is needed to form the target of phthalocyanine photosensitization, J Biol Chem 2003; 278: 2021–29. Vantieghem A, Xu Y, Assefa Z, Piette J, Vandenheede JR, Merlevede W, PAM de Witte, Agostinis P. Phosphorylation of BCL-2 in G2/M phase arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem 2002; M204348200. Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 1976; 36: 2326–29. Wyld L, Reed MW, Brown NJ. Differential cell death response to photodynamic therapy is dependent on dose and cell type. Br J Cancer 2001; 84: 1384–86. Wyllie AH. The biology of cell death in tumours. Anticancer Res 1985; 5: 131–36. Wagener C, Bargou RC, Daniel PT, Bommert K, Mapara MY, Royer HD, et al. Induction of the death-promoting gene bax-alpha sensitizes cultured breast cancer cells to druginduced apoptosis. Int J Cancer 1996; 67: 138–41. Wolf P, Rieger E, Kerl H. Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. J Am Acad Dermatol 1993; 28: 17–21. Warloe T, Peng Q, Steen HB, Giercksky K-E. Localization of porphyrins in human basal cell carcinoma and normal skin tissue induced by topical application of 5-aminolevulinic acid. In: Spinelli P, Fante MD, Marchesini R. Photodynamic therapy and biomedical lasers. Amsterdam: Elsevier Science Publishers B. V., 1992: 454–8. Wolfson SJ, Bartczak A, Bloomer JR. Effect of endogenous heme generation on delta-aminolevulinic acid synthase activity in rat liver mitochondria. J Biol Chem 1979; 254: 3543–46. Waldow SM, Dougherty TJ. Interaction of hyperthermia and photoradiation therapy. Radiat Res 1984; 97: 380–85. Wallach D, E.E. Varfolomeev, N.L. Malinin, Y.V. Goltsev, A.V. Kovalenko, M.P. Boldin, Tumor necrosis factor receptor and Fas signaling mechanisms, Annu Rev Immunol 1999; 17: 331–67. Wilson GD, Grover R, Richman PI, Daley FM, Saunders MI, Dische S. Bcl-2 expression correlates with favourable outcome in head and neck cancer treated by accelerated radiotherapy. Anticancer Res 1996; 16: 2403–8. Waidelich R, Stepp H, Baumgartner R, Weninger E, Hofstetter A, Kriegmair M. Clinical experience with 5-aminolevulinic acid and photodynamic therapy for refractory superficial bladder cancer. J Urology 2001; 165(6 Pt 1): 1904–7. Xu W, Kozak CA, Desnick RJ. Uroporphyrinogen-III synthase, molecular cloning, nucleotide sequence, expression of a mouse full-length cDNA, and its localization on mouse chromosome 7. Genomics 1995; 26: 556–62. Xue LY, Chiu SM, Fiebig A, Andrews DW, Oleinick NL. Photodamage to multiple Bcl-xL isoforms by photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 2003; 22: 9197–204. Xue LY, Chiu SM, Oleinick NL. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 2001; 20: 3420–27. Xie X, Clausen OPF, De Angelis P, Boysen M. Bax expression has prognostic significance that is enhanced when combined with AgNOR counts in glottic carcinomas. Br J Cancer 1998; 78: 100–5. Xie X, Ole P, Paula DA, Morten B. The prognostic value of spontenuous apoptosis, bax, bcl-2, and p53 in oral squamous cell carcinoma of the tongue. Cancer 1999; 86: 913–20 Zhang WG, Ma LP, Wang SW, Zhang ZY, Cao GD. Antisense bcl-2 retrovirus vector increases the sensitivity of a human gastric adenocarcinoma cell line to photodynamic therapy. Photochem Photobiol 1999; 69: 582–86. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36959 | - |
| dc.description.abstract | 背景:由我們過去的研究觀察顯示,以局部塗抹5-氨基酮戊酸(ALA)來進行光動力治療(PDT)的效果,治療口腔疣狀增生(OVH)的效果明顯比口腔白斑(OL)的效果好。而Bax和Bcl-2是細胞凋亡相關蛋白,已有報告指出在不同的腫瘤上,其表現與其預後是有相關的。故本研究的目的是分析Bax和Bcl-2蛋白在口腔疣狀增生及口腔白斑表現是否會影響其對光動力治療的效果。
材料與方法:本研究包含了11例口腔疣狀增生及21例口腔白斑症接受5-氨基酮戊酸光動力治療的患者,以其治療前的切片標本來分析。利用免疫組織化學染色法,分析Bax與Bcl-2蛋白在此32例切片標本的表現。Bax與Bcl-2蛋白在細胞質的染色標記指數(LI),以陽性染色的細胞數目占所有上皮細胞數目的百分比來給予分數,每10%為一等級,記為1~10級分。陽性染色的細胞,染色的強度指數(SI)區分如下:1:無;2:弱;3:中;4:強。標本的染色標記分數(LS)則定義為LI × SI。Bax與Bcl-2標計分數及Bax/Bcl-2 ratio經過計算後,進行統計分析,比較各組別間的差異。 結果:所有11例OVH經過ALA-PDT後都是完全反應(CR)。21例OL,有7例是完全反應(CR),9例是部份反應(PR),5例是無反應(NR)。OVH組比OL組治療反應好(P<0.001),有統計上有義意之相關。而且,OVH組的Bax平均標記分數(P=0.01)和平均Bax/Bcl-2 ratio(P=0.05)都比OL組高,具有統計上有意義之相關。Bax的標記分數在CR組的表現比PR加NR組(P=0.081)高,具有接近統計上有意義之相關;而Bax/Bcl-2 ratio(P=0.048) 在CR組比PR加NR組高,具有統計上有意義之相關。在比較上,雖然OVH組或CR組的Bcl-2標記分數和Bax/Bcl-2 ratio比OL組或PR加NR組高,但不具有統計上有意義之相關。 結論:我們的結果顯示,OVH接受ALA-PDT的臨床治療效果比OL好,具有統計上有意義之相關;與OL比較起來,這也許與OVH的Bax蛋白過度表現和較低的Bcl-2表現有關。此外,若以ALA-PDT治療口腔癌前病變,Bax/Bcl-2 ratio則是一個好的的臨床預後因子。 | zh_TW |
| dc.description.abstract | Background: Our previous studies showed that oral verrucous hyperplasia (OVH) lesions have a significantly better clinical outcome than oral leukoplakia (OL) lesions when treated with topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT). Bax and Bcl-2 proteins are involved in the regulation of apoptosis and have been reported to correlate with prognosis in several tumor types. This study assessed whether the expression of Bax or Bcl-2 in OVH and OL lesions had a significant influence on the clinical outcome of OVH and OL lesions treated with ALA-PDT.
Materials and methods: In this study, 11 OVH and 21 OL lesions were treated with ALA-PDT after initial biopsies of the lesions. An immunohistochemical staining was performed to study the expression of Bax or Bcl-2 in these 32 biopsy specimens. The cytoplasmic Bax or Bcl-2 labeling indices (LIs) were counted as a ratio of positive cells to total cells counted and graded as 1 to 10 for a gradual increase of every 10% positive cells. The staining intensity (SI) of positive cells was graded as follows: 1, no staining; 2, weak; 3, moderate; and 4, strong. The labeling score (LS) was defined as LI × SI. The Bax and Bcl-2 LSs and Bax/Bcl-2 ratios in OVH and OL lesions were calculated and compared between groups. Result: All 11 OVH lesions showed CR after ALA-PDT. Twenty-one OL lesions treated with ALA-PDT revealed CR in 7, PR in 9 and NR in 5. OVH lesions had a significantly better clinical outcome than OL lesions (P< 0.001). Moreover, OVH lesions had a significantly higher mean cytoplasmic Bax LS (P=0.01) and mean Bax/Bcl-2 ratio (P=0.05) than OL lesions. Those CR cases also had a marginally significantly higher mean cytoplasmic Bax LS (P=0.081) and a significantly higher mean Bax/Bcl-2 ratio (P=0.048) than PR plus NR cases. Although OVH and CR lesions had a lower mean cytoplasmic Bcl-2 LS and mean Bax/Bcl-2 ratio than OL and PR plus NR lesions, respectively; the difference was not significant. Conclusion: We conclude that the significantly better clinical outcome after treatment with ALA-PDT in OVH than in OL lesions may be due to a significantly higher expression of Bax and a relatively lower expression of Bcl-2 in OVH than in OL lesions. The Bax/Bcl-2 ratio is a good maker for prediction of the clinical outcome of oral premalignant lesions treated with topical ALA-PDT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:24:54Z (GMT). No. of bitstreams: 1 ntu-94-R92422023-1.pdf: 765747 bytes, checksum: 273dc5add404bec7f0f4d4d8948664e9 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………7
Abstract…………………………………………………………9 Introduction and Background………………………………11 Purposes of This Study……………………………………17 Literature Review 1. Introduction of Photodynamic Therapy (PDT)………18 1.1 Basics of PDT 1.2 Photosensitizers --1.2.1 First-generation photosensitizers --1.2.2 Second-generation photosensitizers 2. ALA-Based PDT………………………………………………22 2.1 Regulation of HEME Synthesis --2.1.1 Heme Synthesis --2.1.2 Regulation of the Heme Synthesis Pathway 2.2 Distribution and Toxicity of PpIX Induced by Topical Application of ALA 2.3 Light Dosimetry for ALA-PDT --2.3.1 Choice of Light Source --2.3.2 Oxygen Depletion During ALA-PDT --2.3.3 Choice of Optimal Wavelength for ALA-PDT --2.3.4 Dosimetry 3. Mechanisms of Cell Death in PDT…………………………29 3.1. Apoptotic Cell Death in PDT 3.2 Role of the Bcl-2 Family Proteins in PDT 4. Expression of Bax and Bcl-2 in Tumors…………………34 4.1 Conflicting Results in Several Tumor Types -- Bcl-2 & Bax 4.2 Expression of Bax and Bcl-2 in Oral Epithelial Lesions 5. Treatment Effect of ALA-PDT for Oral Epithelial Lesions……………………………………………………………39 Materials and Methods 1. Patients and Specimen………………………………………41 2. ALA Preparation………………………………………………42 3. Fluorescence Spectroscopy…………………………………42 4. ALA-PDT…………………………………………………………43 5. Immunohistochemical Staining for Bax and Bcl-2……45 6. Evaluation……………………………………………………46 7. Statistical Analysis………………………………………46 Result 1. The Clinical Outcome of ALA-PDT for Oral Verrucous Hyperplasia and Oral Leukoplakia Lesions………………48 2. Comparison of the mean Cytoplasmic Bax or Bcl-2 LS or Mean Bax/Bcl-2 Ratio among Different Groups of Oral Lesions……………………………………………………………48 2.1 Mean Cytoplasmic Bax LS 2.2 Mean Cytoplasmic Bcl-2 LS 2.3 Mean Bax/Bcl-2 Ratio Discussion…………………………………………………………51 Conclusion…………………………………………………………59 References…………………………………………………………60 Tables………………………………………………………………76 Figures……………………………………………………………83 | |
| dc.language.iso | en | |
| dc.subject | Bax | zh_TW |
| dc.subject | 口腔疣狀增生 | zh_TW |
| dc.subject | 口腔白斑 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 光動力 | zh_TW |
| dc.subject | Bcl-2 | zh_TW |
| dc.subject | Bcl-2 | en |
| dc.subject | verrucous hyperplasia | en |
| dc.subject | leukoplakia | en |
| dc.subject | photodynamic | en |
| dc.subject | Bax | en |
| dc.subject | apoptosis | en |
| dc.title | 細胞凋亡相關蛋白表現與光動力治療效果關係之研究 | zh_TW |
| dc.title | The Correlation Between Apoptosis Related Proteins and the Therapeutic Effect of Photodynamic Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張龍昌 | |
| dc.subject.keyword | Bax,Bcl-2,細胞凋亡,光動力,口腔白斑,口腔疣狀增生, | zh_TW |
| dc.subject.keyword | Bax,Bcl-2,apoptosis,photodynamic,leukoplakia,verrucous hyperplasia, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 747.8 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
