請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36950完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖振鐸 | |
| dc.contributor.author | Shin-Fu Tsai | en |
| dc.contributor.author | 蔡欣甫 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:24:24Z | - |
| dc.date.available | 2016-07-27 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-19 | |
| dc.identifier.citation | [1] Bergman, B. and Hynén, A. (1997). Dispersion effects from unreplicated designs in the 2k−p series. Technometrics 39, 191-198.
[2] Box, G. E. P. and Meyer, R. D. (1986). Dispersion effects from fractional designs. Technometrics 28, 19-27. [3] Bulutoglu, D. A. and Cheng, C. S. (2003). Hidden projection properties of some nonregular fractional factorial designs and their applications. Annals of Statistics 31, 1012-1026. [4] Butler, N. A. and Ramos, V. M. (2007). Optimal additions to and deletions from twolevel orthogonal arrays. Journal of the Royal Statistical Society: Series B 69, 51-61. [5] Chatzopoulos, S. A., Kolyva-Machera, F. and Chatterjee, K. (2011). Optimality results on orthogonal arrays plus p runs for sm factorial experiments. Metrika 73, 385-394. [6] Cheng, C. S. (1978). Optimality of certain asymmetrical experimental designs. Annals of Statistics 6, 1239-1261. [7] Cheng, C. S. (1980). Optimality of some weighing and 2n fractional factorial designs. Annals of Statistics 8, 436-446. [8] Cheng, C. S. (1995). Some projection properties of orthogonal arrays. Annals of Statistics 23, 1223-1233. [9] Cheng, C. S., Deng, L. Y. and Tang, B. (2002). Generalized minimum aberration and design efficiency for nonregular fractional factorial designs. Statistica Sinica 12, 991-1000. [10] Chipman, H., Hamada, M. and Wu, C. F. J. (1997). A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing. Technometrics 39, 372-381. [11] Daniel, C. (1959). Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 1, 311-341. [12] Dasgupta, N., Jacroux, M. and SahaRay, R. (2010). Partially replicated fractional factorial designs. Metrika 71, 295-311. [13] Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statistica Sinica 9, 1071-1082. [14] Draper, N. R. and Smith, H. (1998). Applied regression analysis. 3rd ed. New York:Wiley. [15] Dykstra, O. Jr. (1959). Partial duplication of factorial experiments. Technometrics 1, 63-75. [16] Fries, A. and Hunter, W. G. (1980). Minimum aberration 2k−p designs. Technometrics 22, 601-608. [17] Franklin, M. F. (1985). Selecting defining contrasts and confounded effects in pn−m factorial experiments. Technometrics 27, 165-172. [18] Franklin, M. F. and Bailey, R. A. (1977). Selection of defining contrasts and confounded effects in two-level experiments. Applied Statistics 26, 321-326. [19] Gilmour, S. G. and Trinca, L. A. (2010). Optimal design for statistical inference. Preprint. [20] Greenfield, A. A. (1976). Selection of defining contrasts in two-level experiments. Applied Statistics 25, 64-67. [21] Hamada, M. and Balakrishnan, N. (1998). Analyzing unreplicated factorial experiments: a review with some new proposals. Statistica Sinica 8, 1-41. [22] Hamada, M. and Wu, C. F. J. (1992). Analysis of designed experiments with complex aliasing. Journal of Quality Technology 24, 130-137. [23] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal arrays: theory and applications. New York: Springer. [24] Hedayat, A. S. and Zhu, H. (2003). Adding more observations to saturated D-optimal resolution III two-level factorial designs. Journal of Combinatorial Designs 11, 51-77. [25] Ke, W. and Tang, B. (2003). Selecting 2m−p designs using a minimum aberration criterion when some two-factor interactions are important. Technometrics 45, 352-360. [26] Lenth, R. V. (1989). Quick and easy analysis of unreplicated factorials. Technometrics 31, 469-473. [27] Liao, C. T. (1999). Orthogonal three-level parallel flats designs for user-specified resolution. Communications in Statistics-Theory and Methods 28, 1945-1960. [28] Liao, C. T. (2000). Identification of dispersion effects from unreplicated 2n−k fractional factorial designs. Computational Statistics and Data Analysis 33, 291-298. [29] Liao, C. T. and Chai, F. S. (2004). Partially replicated two-level fractional factorial designs. Canadian Journal of Statistics 32, 421-438. [30] Liao, C. T. and Chai, F. S. (2009). Design and analysis of two-level factorial experiments with partial replication. Technometrics 51, 66-74. [31] Liao, C. T. and Iyer, H. K. (1998). Orthogonal parallel-flats designs for s_1^n1 × s_2^n2 mixed factorial experiments. Journal of Statistical Planning and Inference 69, 175-191. [32] Liao, C. T., Iyer, H. K. and Vecchia, D. F. (1996). Construction of orthogonal two-level designs of user-specified resolution where N≠ 2k. Technometrics 38, 342-353. [33] Lin, D. K. J. and Draper, N. R. (1992). Projection properties of Plackett and Burman designs. Technometrics 34, 423-428. [34] Lupinacci, P. J. and Pigeon, J. G. (2008). A class of partially replicated two level fractional factorial designs. Journal of Quality Technology 40, 184-193. [35] McGrath, R. N. and Lin, D. K. J. (2001a). Testing multiple dispersion effects in unreplicated fractional factorial designs. Technometrics 43, 406-414. [36] McGrath, R. N. and Lin, D. K. J. (2001b). Confunding of location and dispersion effects in unreplicated fractional factorials. Journal of Quality Technology 33, 129-139. [37] Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996). Follow-up designs to resolve confounding in multifactor experiments. Technometrics 38, 303-313. [38] Moreda-Pineiro, J., Alonso-Rodriguez, E., Lopez-Mahia, P., Muniategui-Lorenzo, S., Prada-Rodriguez, D., Moreda-Pineiro, A. and Bermejo-Barrera P. (2007). Development of a new sample pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed. Analytica Chimica Acta 598, 95-102. [39] Mee, R. W. and Peralta, M. (2000). Semifolding 2k−p designs. Technometrics 42, 122- 134. [40] Mukerjee, R. (1999). On the optimality of orthogonal array plus one run plans. Annals of Statistics 27, 82-93. [41] Mukerjee, R. and Wu, C. F. J. (2006). A modern theory of factorial designs. New York: Springer. [42] Nair, V. N. and Pregibon, D. (1988). Analyzing dispersion effects from replicated factorial experiments. Technometrics 30, 247-257. [43] Nelder, J. A. and Lee, Y. (1991). Generalized linear models for the analysis of Taguchitype experiments. Applied Stochastic Models and Data Analysis 7, 107-120. [44] Pan, G. (1999). The impact of unidentified location effects on dispersion-effects identification from unreplicated factorial designs. Technometrics 41, 313-326. [45] Phoa, F. K. H.,Wong, W. K. and Xu, H. (2009). The need of considering the interactions in the analysis of screening designs. Journal of Chemometrics 23, 545-553. [46] Pigeon, J. G. and McAllister, P. R. (1989). A note on partially replicated orthogonal main-effect plans. Technometrics 31, 249-251. [47] Plackett, R. L. and Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika 33, 305-325. [48] Searle, S. R. (1982). Matrix algebra useful for statistics. New York: Wiley. [49] Snee, R. D. (1985). Experimenting with a large number of variables. in Experiments in Industry: Design, Analysis and Interpretation of Results. Milwaukee, WI: American Society for Quality Control, 25-35. [50] Srivastava, J. N. (1990). Modern factorial design theory for experimenters and statisticians. in Statistical Design and Analysis of Industrial Experiments. New York: Marcel Dekker, 311-406. [51] Taguchi, G. and Wu, Y. (1980). Introduction to off-line quality control. Nagoya, Japan: Central Japan Quality Control Association. [52] Tang, B. and Deng, L. Y. (1999). Minimum G2-aberration for nonregular fractional factorial designs. Annals of Statistics 27, 1914-1926. [53] Vijayan, K. (1976). Hadamard matrices and submatrices. Journal of the Australian Mathematical Society: Series A 22, 469-475. [54] Wang, P. C. (1989). Tests for dispersion effects from orthogonal arrays. Computational Statistics and Data Analysis 8, 109-117. [55] Wolfinger, R. D. and Tobias, R. D. (1998). Joint estimation of location, dispersion, and random effects in robust design. Technometrics 40, 62-71. [56] Wu, C. F. J. and Chen, Y. (1992). A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics 34, 162-175. [57] Wu, C. F. J. and Hamada, M. (2009). Experiments: planning, analysis, and optimization. 2nd ed. New York: Wiley. [58] Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica 13, 691-708. [59] Xu, H. and Wu, C. F. J. (2001). Generalized minimum aberration for asymmetrical fractional factorial designs. Annals of Statistics 29, 1066-1077. [60] Ye, K. Q. and Hamada, M. (2000). Critical values of the Lenth method for unreplicated factorial designs. Journal of Quality Technology 32, 57-66. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36950 | - |
| dc.description.abstract | 因子設計為研究試驗反應變數與多個因子之關係的重要統計工具。目前已被廣泛地應用於農業田間試驗、醫學臨床試驗、社會科學、品質管制與工業產品製程改進等相關領域。試驗初期, 單一重複的部分二變級或三變級因子設計常被用於搜尋對試驗結果有重要影響的因子效應。在重要因子效應稀少的原則之下, 許多分析單一重複試驗資料的統計分析方法已陸續被提出。然而實際應用上, 單一重複試驗的分析結果有時令人不甚滿意。主要原因在於試驗缺乏重複, 導致試驗機差變方無法有效估計。完全重複所有處理組合是一個執行重複試驗並改善上述問題的方法, 但試驗成本將因此而倍增。
本論文提出一個適用於搜尋重要因子效應的折衷試驗方法: 部分重複的因子設計。首先藉由幾組實際試驗的資料分析, 說明部分重複的因子設計在應用上的優勢。針對研究者在實際試驗上的需要, 我們討論以下幾個重要的試驗設計議題。(1) 部分重複二變級主效應設計之最適性。(2) 當不可忽略的交感效應存在時, 部分重複二變級主效應設計之穩健性。(3) 當研究者指定需求集時, 二變級與三變級混合部分重複因子設計之最適性。我們提出建構最適設計的充分條件及建構方法, 並將一些常用的設計製成表格提供研究者進行試驗時參考使用。 | zh_TW |
| dc.description.abstract | Factorial design is a useful statistical tool for simultaneously investigating the relationship between the experimental response and multiple factors of interest. It has been successfully used in a wide range of applications, such as agricultural field experiments, biomedical trials,
social sciences, quality controls and industrial product/process improvements, etc. At the preliminary stage of a scientific investigation, an unreplicated two-level or three-level fractional factorial design is commonly used to identify important factorial effects, which have an impact on the experimental response. Under the effect sparsity principle, several statistical analysis methods are developed for analyzing the outcomes of unreplicated experiments. However, there are many experimental scenarios in which unreplicated experiments typically lead to unsatisfactory findings. This is due mainly to the lack of a replication-based estimate of the experimental error variance. Fully replicating all the treatment combinations is a straightforward method to obtain the pure replicates. However, the experimental cost is rapidly outgrown. In this dissertation, partially replicated factorials, which serve as a compromise between unreplicated and fully replicated experiments, are proposed for effectively and economically screening important effects. First, several practical examples are provided to demonstrate that the partially replicated factorials are competitive in practical applications. To meet the requirements of experimental designs raised by investigators, the following practical design issues regarding the selection of partial replication on fractional factorial designs are explored, respectively. (1) The optimality of partially replicated two-level main-effect plans. (2) The robustness of partially replicated two-level main-effect plans against non-negligible two-factor and higher order interactions. (3) The optimality of partially replicated two-level and three-level mixed factorials for a user pre-specified requirement set. For these important design issues, sufficient conditions and construction approaches to derive the desired designs are investigated. In addition, a series of designs are provided for practical uses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:24:24Z (GMT). No. of bitstreams: 1 ntu-100-D94621201-1.pdf: 613913 bytes, checksum: e59bfc4733e5127003cefbe1a3f5e0a1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Illustrative examples . . . . . . . . . . . . . . . . 2 1.1.1 Viscosity measurement experiment . . . . . . . . . . 2 1.1.2 Pressurized liquid extraction experiment . . . . . . 4 1.1.3 A simulated experiment . . . . . . . . . . . . . . . 7 1.2 Statistical inference on designed experiments . . . . 10 1.3 Design issues for partially replicated factorials . . 12 1.3.1 Efficient partially replicated factorials . . . . . 12 1.3.2 Robust partially replicated factorials . . . . . . .13 1.3.3 Partially replicated factorials when certain interactions are important . . . . . . . . . . . . . . . .14 1.4 Organization of the dissertation . . . . . . . . . . .15 2 D-optimal Partially Replicated Two-Level Main-Effect Plans . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1 The problem of interest . . . . . . . . . . . . . . . 16 2.2 D-optimal partial replication on minimal OMEPs . . . .18 2.3 Construction approaches . . . . . . . . . . . . . . . 22 2.4 Concluding remarks . . . . . . . . . . . . . . . . . .23 3 Robust Partially Replicated Two-Level Main-Effect Plans 24 3.1 A compound criterion and its justification . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Properties of EMA criterion . . . . . . . . . . . . . 28 3.3 Robust partial replication on minimal OMEPs . . . . . 30 3.4 Table designs . . . . . . . . . . . . . . . . . . . . 36 3.5 Concluding remarks . . . . . . . . . . . . . . . . . .38 4 Optimal Partially Replicated 2n1×3n2 Mixed Factorial Designs 41 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . 41 4.1.1 Complex factorial effects . . . . . . . . . . . . . 41 4.1.2 2n1 × 3n2 parallel-flats designs . . . . . . . . . .44 4.2 Main results . . . . . . . . . . . . . . . . . . . . .45 4.3 Examples . . . . . . . . . . . . . . . . . . . . . . .49 4.4 Concluding remarks . . . . . . . . . . . . . . . . . .52 5 Conclusion and Future Research 53 Bibliography 56 | |
| dc.language.iso | en | |
| dc.subject | 投影性質 | zh_TW |
| dc.subject | 因子設計 | zh_TW |
| dc.subject | Hadamard矩陣 | zh_TW |
| dc.subject | 穩健設計 | zh_TW |
| dc.subject | 最適設計 | zh_TW |
| dc.subject | 直交表 | zh_TW |
| dc.subject | Robust design | en |
| dc.subject | Factorial design | en |
| dc.subject | Hadamard matrix | en |
| dc.subject | Optimal design | en |
| dc.subject | Orthogonal array | en |
| dc.subject | Projection property | en |
| dc.title | 部分重複因子試驗之設計與分析 | zh_TW |
| dc.title | Design and Analysis of Partially Replicated Factorial Experiments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王丕承,羅夢娜,丁兆平,蔡風順,蔡碧紋 | |
| dc.subject.keyword | 因子設計,Hadamard矩陣,最適設計,直交表,投影性質,穩健設計, | zh_TW |
| dc.subject.keyword | Factorial design,Hadamard matrix,Optimal design,Orthogonal array,Projection property,Robust design, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 599.52 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
