Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3691
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松
dc.contributor.authorWei-Chen Chouen
dc.contributor.author周韋辰zh_TW
dc.date.accessioned2021-05-13T08:35:59Z-
dc.date.available2017-08-30
dc.date.available2021-05-13T08:35:59Z-
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation[1] Goldsmid, H. J. (2009). Introduction to thermoelectricity (Vol. 121). Springer Science & Business Media.
[2] Duckworth, Henry E. (1960). Electricity and Magnetism. New York: Holt, Rinehart and Winston, 181-183.
[3] D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press: New York, 1995.
[4] Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature materials, 7(2), 105-114.
[5] Zhao, L. D., Zhang, B. P., Liu, W. S., & Li, J. F. (2009). Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound. Journal of Applied Physics, 105(2), 023704.
[6] Venkatasubramanian, R., Siivola, E., Colpitts, T., & O'quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602.
[7] Dresselhaus, M. S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., Koga, T., Ying J. Y., & Chen, G. (1999). The promise of low-dimensional thermoelectric materials. Microscale Thermophysical Engineering, 3(2), 89-100.
[8] Jiang, J., Chen, L., Yao, Q., Bai, S., & Wang, Q. (2005). Effect of TeI 4 content on the thermoelectric properties of n-type Bi–Te–Se crystals prepared by zone melting. Materials chemistry and physics, 92(1), 39-42.
[9] Jiang, J., Chen, L., Bai, S., Yao, Q., & Wang, Q. (2005). Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x crystals prepared via zone melting. Journal of crystal growth, 277(1), 258-263.
[10] Wang, S. Y., Xie, W. J., Li, H., Tang, X. F., & Zhang, Q. J. (2011). Effects of cooling rate on thermoelectric properties of n-type Bi2(Se0.4Te0.6)3 compounds. Journal of electronic materials, 40(5), 1150-1157.
[11] Aboulfarah, B., Mzerd, A., Giani, A., Boulouz, A., Pascal-Delannoy, F., Foucaran, A., & Boyer, A. (2000). Growth of (Bi l− xSb x)2Te3 thin films by metal-organic chemical vapour deposition. Materials chemistry and physics, 62(2), 179-182.
[12] Zou, H., Rowe, D. M., & Williams, S. G. K. (2002). Peltier effect in a co-evaporated Sb2Te3(P)-Bi2Te3(N) thin film thermocouple. Thin Solid Films, 408(1), 270-274.
[13] Beyer, H., Nurnus, J., Böttner, H., Lambrecht, A., Wagner, E., & Bauer, G. (2002). High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity. Physica E: Low-dimensional Systems and Nanostructures, 13(2), 965-968.
[14] Noro, H., Sato, K., & Kagechika, H. (1993). The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering. Journal of Applied Physics, 73(3), 1252-1260.
[15] Fleurial, J. P., Borshchevsky, A., Ryan, M. A., Phillips, W. M., Snyder, J. G., Caillat, T., Kolawa, E.A., Herman, J. A., Mueller, P. & Nicolet, M. (1998). Development of thick-film thermoelectric microcoolers using electrochemical deposition. In MRS Proceedings (Vol. 545, p. 493). Cambridge University Press.
[16] Martın-González, M. S., Prieto, A. L., Gronsky, R., Sands, T., & Stacy, A. M. (2002). Insights into the electrodeposition of Bi2Te3. Journal of The Electrochemical Society, 149(11), C546-C554.
[17] Pandey, R. K., Chandra, S., & Sahu, S. N. (1996). Handbook of semiconductor electrodeposition. M. Dekker.
[18] Kröger, F. A. (1978). Cathodic deposition and characterization of metallic or semiconducting binary alloys or compounds. Journal of the Electrochemical Society, 125(12), 2028-2034.
[19] Kissinger, P. T., & Heineman, W. R. (1983). Cyclic Voltammetry. Journal of Chemical Education, 60(9), 702-706.
[20] Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Corrosion Engineering, Houston, Texas.
[21] Tritt, T. M. (1999). Holey and unholey semiconductors. Science, 283(5403), 804-805.
[22] Bando, H., Koizumi, K., Oikawa, Y., Daikohara, K., Kulbachinskii, V. A., & Ozaki, H. (2000). The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy. Journal of Physics: Condensed Matter, 12(26), 5607.
[23] Caillat, T., Carle, M., Pierrat, P., Scherrer, H., & Scherrer, S. (1992). Thermoelectric properties of (Bi xSb1− x)2Te3 single crystal solid solutions grown by the THM method. Journal of Physics and Chemistry of Solids, 53(8), 1121-1129.
[24] Okamoto, H., Kacprzak, L., & Subramanian, P. R. (Eds.). (1996). Binary alloy phase diagrams. ASM international.
[25] Takahashi, M., Oda, Y., Ogino, T., & Furuta, S. (1993). Electrodeposition of Bi‐Te Alloy Films. Journal of the Electrochemical Society, 140(9), 2550-2553.
[26] Li, F., & Wang, W. (2009). Electrodeposition of BixSb2−xTey thermoelectric thin films from nitric acid and hydrochloric acid systems. Applied Surface Science, 255(7), 4225-4231.
[27] 康菀珊,電鍍電位與鍍液離子濃度和pH值對電鍍碲化鉍的影響,台灣大學碩士論文,2012年7月。
[28] Goldsmid, H. J., Nolas, G. S., & Sharp, J. (2001). Thermoelectrics: Basic Principles and New Materials Developments.
[29] Li, X., Koukharenko, E., Nandhakumar, I. S., Tudor, J., Beeby, S. P., & White, N. M. (2009). High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography. Physical Chemistry Chemical Physics, 11(18), 3584-3590.
[30] Martín‐González, M., Prieto, A. L., Gronsky, R., Sands, T., & Stacy, A. M. (2003). High‐Density 40 nm Diameter Sb‐Rich Bi2–xSbxTe3 Nanowire Arrays. Advanced materials, 15(12), 1003-1006.
[31] Schoenleber, J., Stein, N., & Boulanger, C. (2014). Influence of tartaric acid on diffusion coefficients of BiIII, SbIII, TeIV in aqueous medium: Application of electrodeposition of thermoelectric films. Journal of Electroanalytical Chemistry, 724, 111-117.
[32] Li, S., Soliman, H. M., Zhou, J., Toprak, M. S., Muhammed, M., Platzek, D., Ziolkowski, P, & Müller, E. (2008). Effects of annealing and doping on nanostructured bismuth telluride thick films. Chemistry of Materials, 20(13), 4403-4410.
[33] Prokofieva, L. V., Pshenay-Severin, D. A., Konstantinov, P. P., & Shabaldin, A. A. (2009). Optimum composition of a Bi2Te3−xSex alloy for the n-type leg of a thermoelectric generator. Semiconductors, 43(8), 973-976.
[34] Michel, S., Stein, N., Schneider, M., Boulanger, C., & Lecuire, J. M. (2003). Optimization of Chemical and Electrochemical Parameters for the Preparation of N-type Bi2Te2.7Se0.3 Thin Films by Electrodeposition. Journal of Applied Electrochemistry, 33(1), 23-27.
[35] Martín-González, M., Snyder, G. J., Prieto, A. L., Gronsky, R., Sands, T., & Stacy, A. M. (2003). Direct Electrodeposition of Highly Dense 50 nm Bi2Te3-ySey Nanowire Arrays. Nano Letters, 3(7), 973-977.
[36] Bu, L., Wang, W., & Wang, H. (2007). Electrodeposition of N-type Bi2Te3−ySey Thermoelectric Thin Films on Stainless Steel and Gold Substrates. Applied Surface Science, 253(6), 3360-3365.
[37] Bu, L., Wang, W., & Wang, H. (2008). Effect of the Substrate on the Electrodeposition of Bi2Te3−ySey Thin Films. Materials Research Bulletin, 43(7), 1808-1813.
[38] Michel, S., Diliberto, S., Stein, N., Bolle, B. & Boulanger, C. (2008). Characterisation of electroplated Bi2(Te1−xSex)3 alloys. Journal of Solid State Electrochemistry, 12(1), 95-101.
[39] Liu, W. S., Zhang, B. P., Li, J. F., & Zhao, L. D. (2007). Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering. Journal of Physics D: Applied Physics, 40(2), 566.
[40] Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z., Fleurial, J. P. & Gogna, P. (2007). New Directions for Low‐Dimensional Thermoelectric Materials. Advanced Materials, 19(8), 1043-1053.
[41] Zhao, L. D., Zhang, B. P., Li, J. F., Zhang, H. L., & Liu, W. S. (2008). Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 10(5), 651-658.
[42] Yan, X., Poudel, B., Ma, Y., Liu, W. S., Joshi, G., Wang, H., Lan, Y., Wang, D., Chen, G. & Ren, Z. F. (2010). Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2. 7Se0. 3. Nano letters, 10(9), 3373-3378.
[43] Fleurial, J. P., Snyder, G. J., Herman, J. A., Giauque, P. H., Phillips, W. M., Ryan, M. A., Shakkottai, P., Colawa, E.A. & Nicolet, M. A. (1999, August). Thick-film Thermoelectric Microdevices. In Thermoelectrics, 1999. Eighteenth International Conference on (pp. 294-300). IEEE.
[44] Kim, M. Y., & Oh, T. S. (2012). Thermoelectric thin film device of cross-plane configuration processed by electrodeposition and flip-chip bonding. Materials Transactions, 53(12), 2160-2165.
[45] Uda, K., Seki, Y., Saito, M., Sonobe, Y., Hsieh, Y. C., Takahashi, H., Terasaki, K., & Homma, T. (2015). Fabrication of Π-structured Bi-Te thermoelectric micro-device by electrodeposition. Electrochimica Acta, 153, 515-522.
[46] Jin, Y., & Wang, W. (2010). Effect of Substrate on the Structure and Thermoelectric Properties of n-Type Bi2Te3−ySey Thin Films Prepared by Electrodeposition. Journal of electronic materials, 39(9), 1469-1475.
[47] Zimmer, A., Stein, N., Terryn, H., & Boulanger, C. (2007). Optical and thermoelectric characterizations of electroplated n-Bi2(Te0.9Se0.1)3. Journal of Physics and Chemistry of Solids, 68(10), 1902-1907.
[48] Tritt, T. M., & Subramanian, M. A. (2006). Thermoelectric materials, phenomena, and applications: a bird's eye view. MRS bulletin, 31(03), 188-198.
[49] Jones, S. E. W., Zheng, S. H., Jeffrey, C. A., Seretis, S., Morin, S., & Compton, R. G. (2008). Stripping voltammetry of bismuth at Au (111): Mathematical modelling and numerical simulation. Journal of Electroanalytical Chemistry, 616(1), 38-44.
[50] Milne, J., & LaHaie, P. (1979). Chloroselenate (IV) equilibriums in aqueous hydrochloric acid. Inorganic Chemistry, 18(11), 3180-3183.
[51] Mohamed, R., & Leong, W. L. (2012). Analysis of selenium species using cathodic stripping voltammetry. Jurnal Teknologi, 44(1), 55-66.
[52] Ham, S., Jeon, S., Park, M., Choi, S., Paeng, K. J., Myung, N., & Rajeshwar, K. (2010). Electrodeposition and stripping analysis of bismuth selenide thin films using combined electrochemical quartz crystal microgravimetry and stripping voltammetry. Journal of Electroanalytical Chemistry, 638(2), 195-203.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3691-
dc.description.abstract在中低溫範圍,碲化鉍合金系統是效率最好的熱電材料。透過添加第三元素硒,可以形成三元n型熱電材料,其中以Bi2Te2.7Se0.3化學組成熱電轉換效率最高。面對微型化時代,傳統塊材尺寸有其限制,而薄膜材料受限於製程昂貴及前驅物毒性,較為困難工業化;厚膜製備提供了可能的前景,其中電鍍製程具有成膜速率快、不需真空設備、與微機電元件整合等優點。三元n型電鍍製程中,相對於硝酸系統,鹽酸系統較少被討論。本研究將探討不同電鍍參數對鍍層之影響,並量測熱電性質,且於微機電元件上進行電鍍。
由循環伏安掃描結果可知氯離子對於三種離子之影響,分別使鉍離子及硒離子還原峰值電位向負偏,使碲離子還原峰值向正偏。不論在硝酸或鹽酸系統中,均可發現添加Se造成還原峰值電位提前,表示有pure underpotential deposition發生。
板材電鍍部分,在鹽酸系統下,經三小時與六小時定電位電鍍後,可分別獲得27與43 μm平坦緻密的三元n-type鍍層,成分分別為Bi1.88Te2.80Se0.32及Bi1.89Te2.82Se0.29。XRD結果顯示三元鍍層結晶性優於二元系統,TEM影像顯示由奈米等級顆粒堆疊,且具有特殊層狀結構。因導電底材會影響電阻率量測,故鍍層先經由冷鑲埋樹脂翻模後,再進行熱電材性質之量測。本研究之電阻率及載子遷移率優於文獻,但鍍層成分稍微偏離計量比,造成Seebeck係數不足;比較緻密與鬆散鍍層,可發現緻密鍍層之電阻、載子遷移率、Seebeck係數均優於鬆散鍍層。
由於微機電元件幾何形狀與板材不同,影響電鍍過電位,使鍍層形貌與成分皆不同於板材電鍍所設計之結果。經調控電鍍液之配比,成分可符合計量比,定電位電鍍三小時可獲得20 μm三元n型緻密鍍層。
zh_TW
dc.description.abstractThermoelectric materials can convert heat into electricity, and vice versa. Bi2Te2.7Se0.3 is considered to be one of the most efficient n-type thermoelectric materials near room temperature. The current tendency to miniaturization has provoked interest in thick film thermoelectric devices. Among the methods to deposit thick films, electrochemical deposition is a promising method due to its vacuum-free system, higher deposition rate, and complete integration with MEMS. In fact, nitric acid system was studied well, so further investigation of hydrochloric acid system has to be conducted.
In this research, electrodeposition of n-type Bi2Te2.7Se0.3 was studied, followed by the measurement of thermoelectric properties and the preparation of MEMS devices. Firstly, in order to understand the differences between the nitric acid and the hydrochloric acid system, cyclic voltammetry was conducted. According to the results, with the introduction of chloride ions, reduction potential for BiIII and SeIV would shift toward negative direction; a positive shift of reduction potential for TeIV was observed. Furthermore, by adding selenium ions in the binary system, the reduction peaks shifted toward positive direction. Secondly, compact deposits of Bi1.88Te2.80Se0.32 with 27 μm and Bi1.89Te2.82Se0.29 with 43 μm were obtained, respectively, after potentiostatic deposition for 3 and 6 hours. Thirdly, deposits were flipped from substrates by epoxy resin prior to the measurement of thermoelectric properties. The resistivity and mobility of the deposits were better than other researches, but slight deviation of composition may lead to low Seebeck coefficient. Last but not least, compact and stoichiometric n-type deposits with 20 μm were successfully produced on MEMS.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:35:59Z (GMT). No. of bitstreams: 1
ntu-105-R03527002-1.pdf: 8069785 bytes, checksum: f8057a9f17202068ef3bb0ace315028b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents總目錄
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
總目錄 v
圖目錄 viii
表目錄 xi
第1章 緒論 1
第2章 文獻回顧 2
2.1熱電效應 2
2.1.1 Seebeck效應 2
2.1.2 Peltier效應 3
2.1.3 Thomson效應 4
2.1.4熱電材料重要物理量 5
2.2熱電材料製備方式 8
2.3電化學 9
2.3.1電鍍基本原理 9
2.3.2過電位 10
2.3.3二元化合物電鍍機制 10
2.3.4循環伏安法 11
2.3.5 Pourbaix Diagram簡介 14
2.4 Bi2Te3 15
2.4.1晶體結構 16
2.4.2 Bi2Te3相圖 17
2.4.3 Bi2Te3電鍍製程 17
2.4.4 硝酸與鹽酸系統之差異 18
2.5 Bi0.5Sb1.5Te3 20
2.6 Bi2Te2.7Se0.3 22
2.6.1 鉍碲硒Pourbaix Diagram 23
2.6.2 電鍍Bi2Te2.7Se0.3之發展 26
2.6.3 Bi2Te2.7Se0.3之熱電性質 29
2.7熱電元件 31
第3章 實驗方法 33
3.1實驗流程 33
3.2溶液配製 33
3.3電化學 34
3.3.1電鍍製程 34
3.3.2循環伏安掃描 35
3.4微結構及成分分析 36
3.4.1掃描式電子顯微鏡 36
3.4.2能量散佈光譜儀 36
3.4.3 電子探測微分析儀 37
3.4.4 X射線繞射分析 37
3.4.5穿透式電子顯微鏡 38
3.5板材性質量測 38
第4章 結果與討論 39
4.1循環伏安掃描 39
4.2板材電鍍 47
4.2.1電鍍參數(電位、時間、溫度)與鍍層之關係 47
4.2.2結晶性與晶粒觀察 54
4.3性質量測 57
4.4微機電元件電鍍 59
第5章 結論 63
參考文獻 64
 
圖目錄
圖2.1 Seebeck及Peltier效應實驗裝置圖[1] 3
圖2.2 串聯失敗示意圖 4
圖2.3 有效串聯示意圖 4
圖2.4 Thomson實驗裝置圖[2] 5
圖2.5載子濃度(n)與導電率(σ)、Seebeck係數(α)、功率因子(α2σ)以及熱導率(λ) 的關係[3] 7
圖2.6 載子與聲子於奈米微米複合材料中行進路線示意圖[5] 7
圖2.7 不同維度ZT隨量子井與量子線之寬度變化[7] 8
圖2.8 電極表面不同電鍍階段區域示意圖[17] 10
圖2.9 循環伏安法輸入電壓與時間之關係圖[19] 12
圖2.10 循環伏安法電位-電流關係圖[19] 13
圖2.11 循環伏安掃瞄過程中離子濃度分佈[19] 13
圖2.12 水之Pourbaix diagram [20] 15
圖2.13 不同材料ZT值隨溫度變化[21] 15
圖2.14 Bi2Te3晶體結構[22] 16
圖2.15 Bi-Te二元平衡相圖[24] 17
圖2.16 鉍於不同酸中CV掃描結果比較[26] 19
圖2.17 碲於不同酸中CV掃描結果比較[26] 19
圖2.18 鉍、碲及其混合溶液在鹽酸中CV掃描結果比較[27] 20
圖2.19 三元p-type電鍍(a)不同電鍍電位下相對應之鍍層成分,以及電位在(b)區間I (c)區間II (d)區間III電鍍之表面形貌[29] 21
圖2.20 加入Sb前後循環伏安掃描比較[30] 21
圖2.21 三元、二元熱電材料Z值隨導電率變化[28] 22
圖2.22 鉍之Pourbaix diagram [20] 23
圖2.23 碲之Pourbaix diagram [20] 24
圖2.24 BiTe二元Pourbaix diagram [16] 25
圖2.25 硒之Pourbaix diagram [20] 26
圖2.26 三元Bi1.97Te2.66Se0.36鬆散鍍層[34] 28
圖2.27 三元n-type鍍層於(a)較高沉積速率與(b)較低沉積速率之橫截面形貌[35] 28
圖2.28 三元n-type鍍層於(a)不鏽鋼底材與(b)金底材上電鍍之表面形貌[36] 29
圖2.29 於不銹鋼底材上之較緻密表面形貌[38] 29
圖2.30 文獻中鍍層形貌[32] 30
圖2.31 熱電元件示意圖[48] 32
圖2.32 微型化效應對單位面積冷卻功率之影響[43] 32
圖3.1 實驗流程圖 33
圖4.1 鉍離子於不同種類酸中循環伏安掃描結果 41
圖4.2 碲離子於不同種類酸中循環伏安掃描結果 41
圖4.3 硒離子於不同種類酸中循環伏安掃描結果 42
圖4.4 硒離子於不同濃度鹽酸中循環伏安掃描結果 42
圖4.5 三元BiTeSe (a)循環伏安掃描結果(b)陰極部分 43
圖4.6 鍍液在1 M硝酸中循環伏安陰極部分綜合比較 44
圖4.7 鍍液在0.35 M鹽酸中循環伏安陰極部分綜合比較 45
圖4.8 金底材與三元鍍層底材於硝酸系統循環伏安掃描結果 46
圖4.9 金底材與三元鍍層底材於鹽酸系統循環伏安掃描結果 46
圖4.10 不同電鍍電位鍍層形貌(a)0mV (b)-20 mV (c)-40 mV (d)-60 mV (e)-80 mV (f)-100 mV (g)-120 mV (h)-140 mV 49
圖4.11 不同電鍍電位鍍層形貌(a)-160 mV (b)-180 mV (c)-200 mV 50
圖4.12 於電鍍電位0 mV至-200 mV區間鍍層成分隨電位變化之關係 50
圖4.13 三元鍍液於-20 mV定電位電鍍15分鐘(a)表面形貌(b)橫截面 51
圖4.14 三元鍍液於-20 mV下定電位電鍍三小時之(a)表面形貌與(b)橫截面形貌 52
圖4.15 三元鍍液於-20 mV下定電位電鍍三小時橫截面成分分析 52
圖4.16 三元鍍液於-20 mV下定電位電鍍六小時之(a)表面形貌與(b)橫截面形貌 53
圖4.17 三元鍍液於-20 mV下定電位電鍍六小時橫截面成分分析 53
圖4.18 二元鍍層於-20 mV定電位電鍍XRD結果 55
圖4.19 三元鍍層於-20 mV定電位電鍍XRD結果 55
圖4.20 三元鍍層於-20 mV定電位電鍍20分鐘TEM橫截面形貌 56
圖4.21 三元鍍層於-20 mV定電位電鍍20分鐘TEM橫截面暗場影像 56
圖4.22 S2鍍液於-140 mV定電位電鍍1小時鬆散鍍層橫截面 58
圖4.23 S2溶液於(a)0 mV (b)-10 mV (c)-20 mV (d)-30 mV定電位電鍍表面形貌 60
圖4.24 以S2溶液於-20 mV下定電位電鍍元件覆蓋情形 60
圖4.25 以(a)S3 (b)S4 (c)S5 (d)S6 (e)S7電鍍液於-20 mV定電位電鍍30分鐘之表面形貌 61
圖4.26 以S7鍍液於-20 mV定電位電鍍三小時(a)元件之表面形貌(b)元件邊緣(c)邊緣橫截面(d)橫截面影像 62
 
表目錄
表2.1 Bi2Te2.7Se0.3塊材熱電性質隨溫度變化[33] 22
表2.2 文獻三元n-type熱電性質比較(*表示沒翻模) 30
表3.1 鍍液成分 34
表3.2 鹽酸系統循環伏安掃描溶液配方 35
表3.3 硝酸系統循環伏安掃描溶液配方 36
表4.1 鍍液在1 M硝酸中循環伏安峰值統整 44
表4.2 鍍液在0.35 M鹽酸中循環伏安峰值統整 45
表4.3 三元鍍液於峰值及接近峰值電位下定電位電鍍20分鐘鍍層成分分析結果 45
表4.4 板材性質量測結果(a)三組25 μm之Bi1.88Te2.80Se0.32鍍層 (b)20 μm之Bi2.08Te2.54Se0.34鬆散鍍層 58
表4.5 使用S2鍍液配方於不同電位下電鍍鍍層成分比較 60
表4.6 使用不同鍍液配方於-20 mV定電位電鍍之板材及元件成分比較 61
dc.language.isozh-TW
dc.subject熱電材料zh_TW
dc.subject循環伏安zh_TW
dc.subjectBi2Te2.7Se0.3zh_TW
dc.subject微機電元件zh_TW
dc.subject厚膜zh_TW
dc.subjectthick filmen
dc.subjectMEMS deviceen
dc.subjectcyclic voltammetryen
dc.subjectthermoelectric materialen
dc.subjectBi2Te2.7Se0.3en
dc.titleBi-Te-Se三元熱電厚膜製備及性質研究zh_TW
dc.titleElectrodeposition and Characterization of Bi-Te-Se Thermoelectric Thick Filmsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文錦,莊東漢,廖建能,黃憲中
dc.subject.keywordBi2Te2.7Se0.3,熱電材料,循環伏安,厚膜,微機電元件,zh_TW
dc.subject.keywordBi2Te2.7Se0.3,thermoelectric material,cyclic voltammetry,thick film,MEMS device,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201603178
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf7.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved