Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許武榮
dc.contributor.authorShu-Ming Changen
dc.contributor.author張書銘zh_TW
dc.date.accessioned2021-06-13T08:22:22Z-
dc.date.available2005-07-22
dc.date.copyright2005-07-22
dc.date.issued2005
dc.date.submitted2005-07-18
dc.identifier.citationDroegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.
Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan area mesoscale experiments: An overview. Bull. Amer. Meteor. Soc., 71, 488–503.
LeMone, M. A., R. H. Johnson, and P. S. Ray, 1989: Workshop on TAMEX preliminary scientific results. TAMEX Newsletter, Vol. 2, No. 3, 4–8. [Available from NCAR, P. O. Box 3000, Boulder, CO 80307-3000.].
Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959–971.
Lin, Y.-J., T. C. Wang, and J. H. Lin, 1986: Pressure and temperature perturbations within a squall line thunderstorm derived from SESAME dual-Doppler data. J. Atmos. Sci., 43, 2302–2327.
Ogura, Y., and Y.-L. Chen, 1977: A life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci., 34, 1458–1476.
Tao, W. K., and J. Simpson, 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119, 2699–2723.
Wang, T.-C. C., Y.-J. Lin, R. W. Pasken, and H. Shen, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci., 47, 2357–2381.
Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1466–1483.
Yeh, H.-C., and Y.-L. Chen, 1998: Characteristics of the rainfall distribution over Taiwan during TAMEX. J. Appl. Meteor., 37, 1457–1469.
Zhang, D.-L., and K. Gao, 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiform precipitation. Mon. Wea. Rev., 117, 2067–2094.
Jen-Hsin Teng, Ching-Sen Chen, Tai-Chi Chen Wang and Yi-Leng Chen. 2000: Orographic Effects on a Squall Line System over Taiwan. Mon. Wea. Rev.,: 128, 1123–1138.
Browning, K. A., 1964 : Airflow and precipitation trajectories within severe local storms which travel to the right of the mean wind. J. Atmos. Sci., 21, 634-639.
———, and F. H. Ludlam, 1962 : Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117-135.
Byers, H. R., and R. R. Braham, 1949 : The Thunderstorm. U. S. Gov’t Printing Office, Washington DC, 287pp. [NTIS PB-234-515.]
Fankhauser, J. C., 1974 : The derivation of consistent fields of wind and geo- potential height from mesoscale rawinsonde data. J. Appl. Meteor., 13, 637-646.
Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846-3879.
Frank, W. M., 1978 : The life cycles of GATE convective systems. J. Atmos. Sci., 35, 1256-1264.
Fujita, T., 1955 : Results of detailed synoptic studies of squall lines. Tellus, 7, 405-436.
———, and H. A. Brown, 1958:A study of mesosystems and their radar echoes. Bull. Amer. Meteor. Soc., 39, 538-554.
———, 1959 : Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16, 454-466.

———, 1963 : Analytical mesometeorology : a review. Meteor. Monogr., 27, 77-125.
Glossary of Meteorology, R. E. Huschke, Ed.,1959.Amer. Meteor. Soc., Boston, p.534.
Houze, R. A., 1977 : Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540-1567.
———, S. A. Rutledge, M. I. Biggerstaff and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608-619.
Hsu, W.-R., and J.-H. Tai, 1999:Method of solving moist thermodynamic equa- tions in NTU-Purdue non-hydrostatic model and tests on 2D moist moun- tain waves. TAO, 10, 305-320.
———, and W.-Y. Sun, 2001:A time-split, forward-backward numerical model
for solving a system of nonhydrostatic and compressible equations. Tellus, 53A, 279-299.
Johnson, R. H., and M. E. Nicholls, 1982 : A composite analysis of the bound- ary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308- 319.
Klemp, J. B., and R. B. Wilhelmson, 1978a : The simulation of three-dimen- sional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096.
———, and ———, 1978b : Simulations of right- and left- moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097 -1110.
———, R. Rotunno and M. L. Weisman, 1985:Numerical simulations of squall lines in two and three dimensions. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, Amer. Meteor. Soc., 179-182.
Lilly, D. K., 1979: The dynamical structure and evolution of thunderstorms and squall lines. Ann. Rev. Earth Planet. Sci., 7, 117-171.
Lin, Y.-L., R. D. Farley and H. D. Orville, 1983 : Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
Ludlam, F. H., 1963 : Severe local storms: a review. Meteor. Monogr., 5, Amer. Meteor. Soc., 1-30.
Nagata, M., and Y. Ogura, 1991: A modeling case study of interaction between heavy precipitation and a low-level jet over Japan in the Baiu season. Mon. Wea. Rev., 119, 1309-1337.
Newton, C. W., 1950 : Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210-222.
———,1963:Dynamics of severe convective storms. Meteor. Monogr., 5, Amer. Meteor. Soc., 33-58.
———, and J. C. Fankhauser, 1964 : On the movements of convective storms, with emphasis on size discrimination in relation to water-budget require- ments. J. Appl. Meteor., 3, 651-668.
———, 1966 : Circulations in large sheared cumulonimbus. Tellus, 18, 699- 712.
Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convec- tion in the atmosphere. J. Atmos. Sci., 19, 173-179.
———, and M.-T. Liou, 1980:The structure of a midlatitude squall line : a case study. J. Atmos. Sci., 37, 553-567.
Rotunno, R., and J. B. Klemp,1982:The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136-151.
———, J. B. Klemp and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463-485.
Roux, F., J. Testud, M. Payen and B. Pinty, 1984: West African squall-line ther- modynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104-3121.
Sanders, F., and K. A. Emanuel, 1977 : The momentum budget and temporal evolution of a mesoscale convective system. J. Atmos. Sci., 34, 322-330.
Schlesinger, R. E., 1973 : A numerical model of deep moist convection. PartⅠ: comparative experiment for variable ambient moisture and wind shear. J. Atmos. Sci., 30, 835-856.
Smull, B. F., and R. A. Houze, Jr., 1985 : A midlatitude squall line with a trail- ing region of stratiform rain : radar and satellite observations. Mon. Wea. Rev., 113, 117-133.
———, and ———, 1987a : Dual-doppler analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci., 44, 2128-2148.
———, and ———, 1987b : Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889.
Soong, S.-T., and Y. Ogura, 1980 : Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035-2050.
Sun, W.-Y., 1980: A forward-backward time integration scheme to treat internal gravity waves. Mon. Wea. Rev., 108, 402–407.
———, 1993: Numerical experiments for advection equation. J. Comput. Phys., 108, 264-271.
Takeda, T., 1971 : Numerical simulation of a precipitating convective cloud : the formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350-375.
Thorpe, A. J., M. J. Miller and M.W. Moncrieff, 1982 : Two-dimensional con- vection in non-constant shear: a model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739-762.
Weisman, M. L., and J. B. Klemp, 1982 : The dependence of numerically simu- lated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
———, and ———, 1984 : The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479-2498.
Williams, D. T., 1948 : A surface micro-study of squall line thunderstorms. Mon. Wea. Rev., 76, No.11.
Zipser, E. J., 1969 : The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799-814.
———, 1977 : Mesoscale and convective-scale downdrafts as distinct compo- nents of squall-line structure. Mon. Wea.Rev., 105, 1568-1589.
黃唯平,2002 : 二為非淨力模式對颮線之數值模擬。國立臺灣大學大氣科學研究所碩士論文
林李耀, 1997 : 颮線的數值模擬研究。 國立臺灣大學大氣科學研究所博士論文
謝銘恩, 2001 : 對稱性不穩度的數值研究。 國立臺灣大學大氣科學研究所碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36912-
dc.description.abstract本研究內容主要是利用NTU-Purdue非靜力模式,對於颮線作二維架構的模擬,並且在初始條件的設定上,參考了過去相關颮線之數值模擬研究論文。在控制實驗裡面為模擬標準颮線系統,下邊界加入摩擦力,依然可以使系統達到到準恆定之狀態(quasi-steady state),即颮線可能並不一定是要靠不斷的激生對流胞才能維持系統,只要是在有完整之傾斜對流機制且在水氣能源源供給的情況下,颮線就有可能維持穩定而長生命期的狀態。測試一的結果可以發現地形會限制限制颮線發展,當颮線發展初期,所需要的低層擾動因為地形的阻擋,使得原本提供熱胞發展的水氣量減少。當颮線向前發展遭遇到地形時,受到地形抬升,雖然會使得內流匯入上沖流所以呈現更垂直的狀態,但是地形卻會使得內流深度變淺,加上上山地提供較少水氣的關係,加上此時後方加入乾燥的中低層氣流,更加不利於颮線的發展。測試二裡面,當範圍縮小時,因為發展空間不足,則會呈現出多胞系統的現象。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T08:22:22Z (GMT). No. of bitstreams: 1
ntu-94-R91229015-1.pdf: 5907468 bytes, checksum: 4cb28d96ef97049289ec70b81f4a8cd2 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents摘要………………………………………………………………………………...….i
目錄…………………………………………………………………………………..ii
圖表目錄……………………………………………………………………………iv
第一章 研究目的
1-1 前言…………………………………………………………………………1
1-2 颮線發展理論之文回顧……………………………………………………2
1-3 研究目的…………………………………………………………………..10
第二章 模式計算之數值方法
2-1 數值模式介紹……………………………………………………………..12
2-2 預報方程及診斷方程……………………………………………………..12
2-3 網格架構…………………………………………………………………..14
2-4 邊界條件…………………………………………………………………..14
2-5 雲物理過程………………………………………………………………..15
2-6 模式積分方法……………………………………………………………..15
第三章 實驗設計與初始條件
3-1 模擬颮線之環境場………………………………………………………..19
3-2 模擬設計…………………………………………………………………..20
3-3 控制與敏感度測…………………………………………………………..21
第四章 模擬結果之分析
4-1 控制實驗之模擬結果……………………………………………………..23
4-2 測試一與控制個案的比較………………………………………………..29
4-3 測試二與控制個案的比較………………………………………………..31
第五章 結論
結論……………………………………………………………………...33
參考文獻……………………………………………………………………..35
圖表…………………………………………………………………………...41
誌謝…………………………………………………………………………...84
dc.language.isozh-TW
dc.title地形對颮線發展影響的數值模擬研究zh_TW
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳清吉,柯文雄,林沛練,楊明仁
dc.subject.keyword颮線,地形,zh_TW
dc.subject.keywordsquall line,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2005-07-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
5.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved