請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36912
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許武榮 | |
dc.contributor.author | Shu-Ming Chang | en |
dc.contributor.author | 張書銘 | zh_TW |
dc.date.accessioned | 2021-06-13T08:22:22Z | - |
dc.date.available | 2005-07-22 | |
dc.date.copyright | 2005-07-22 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-18 | |
dc.identifier.citation | Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.
Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan area mesoscale experiments: An overview. Bull. Amer. Meteor. Soc., 71, 488–503. LeMone, M. A., R. H. Johnson, and P. S. Ray, 1989: Workshop on TAMEX preliminary scientific results. TAMEX Newsletter, Vol. 2, No. 3, 4–8. [Available from NCAR, P. O. Box 3000, Boulder, CO 80307-3000.]. Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959–971. Lin, Y.-J., T. C. Wang, and J. H. Lin, 1986: Pressure and temperature perturbations within a squall line thunderstorm derived from SESAME dual-Doppler data. J. Atmos. Sci., 43, 2302–2327. Ogura, Y., and Y.-L. Chen, 1977: A life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci., 34, 1458–1476. Tao, W. K., and J. Simpson, 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119, 2699–2723. Wang, T.-C. C., Y.-J. Lin, R. W. Pasken, and H. Shen, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci., 47, 2357–2381. Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1466–1483. Yeh, H.-C., and Y.-L. Chen, 1998: Characteristics of the rainfall distribution over Taiwan during TAMEX. J. Appl. Meteor., 37, 1457–1469. Zhang, D.-L., and K. Gao, 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiform precipitation. Mon. Wea. Rev., 117, 2067–2094. Jen-Hsin Teng, Ching-Sen Chen, Tai-Chi Chen Wang and Yi-Leng Chen. 2000: Orographic Effects on a Squall Line System over Taiwan. Mon. Wea. Rev.,: 128, 1123–1138. Browning, K. A., 1964 : Airflow and precipitation trajectories within severe local storms which travel to the right of the mean wind. J. Atmos. Sci., 21, 634-639. ———, and F. H. Ludlam, 1962 : Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117-135. Byers, H. R., and R. R. Braham, 1949 : The Thunderstorm. U. S. Gov’t Printing Office, Washington DC, 287pp. [NTIS PB-234-515.] Fankhauser, J. C., 1974 : The derivation of consistent fields of wind and geo- potential height from mesoscale rawinsonde data. J. Appl. Meteor., 13, 637-646. Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846-3879. Frank, W. M., 1978 : The life cycles of GATE convective systems. J. Atmos. Sci., 35, 1256-1264. Fujita, T., 1955 : Results of detailed synoptic studies of squall lines. Tellus, 7, 405-436. ———, and H. A. Brown, 1958:A study of mesosystems and their radar echoes. Bull. Amer. Meteor. Soc., 39, 538-554. ———, 1959 : Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16, 454-466. ———, 1963 : Analytical mesometeorology : a review. Meteor. Monogr., 27, 77-125. Glossary of Meteorology, R. E. Huschke, Ed.,1959.Amer. Meteor. Soc., Boston, p.534. Houze, R. A., 1977 : Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540-1567. ———, S. A. Rutledge, M. I. Biggerstaff and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608-619. Hsu, W.-R., and J.-H. Tai, 1999:Method of solving moist thermodynamic equa- tions in NTU-Purdue non-hydrostatic model and tests on 2D moist moun- tain waves. TAO, 10, 305-320. ———, and W.-Y. Sun, 2001:A time-split, forward-backward numerical model for solving a system of nonhydrostatic and compressible equations. Tellus, 53A, 279-299. Johnson, R. H., and M. E. Nicholls, 1982 : A composite analysis of the bound- ary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308- 319. Klemp, J. B., and R. B. Wilhelmson, 1978a : The simulation of three-dimen- sional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096. ———, and ———, 1978b : Simulations of right- and left- moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097 -1110. ———, R. Rotunno and M. L. Weisman, 1985:Numerical simulations of squall lines in two and three dimensions. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, Amer. Meteor. Soc., 179-182. Lilly, D. K., 1979: The dynamical structure and evolution of thunderstorms and squall lines. Ann. Rev. Earth Planet. Sci., 7, 117-171. Lin, Y.-L., R. D. Farley and H. D. Orville, 1983 : Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092. Ludlam, F. H., 1963 : Severe local storms: a review. Meteor. Monogr., 5, Amer. Meteor. Soc., 1-30. Nagata, M., and Y. Ogura, 1991: A modeling case study of interaction between heavy precipitation and a low-level jet over Japan in the Baiu season. Mon. Wea. Rev., 119, 1309-1337. Newton, C. W., 1950 : Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210-222. ———,1963:Dynamics of severe convective storms. Meteor. Monogr., 5, Amer. Meteor. Soc., 33-58. ———, and J. C. Fankhauser, 1964 : On the movements of convective storms, with emphasis on size discrimination in relation to water-budget require- ments. J. Appl. Meteor., 3, 651-668. ———, 1966 : Circulations in large sheared cumulonimbus. Tellus, 18, 699- 712. Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convec- tion in the atmosphere. J. Atmos. Sci., 19, 173-179. ———, and M.-T. Liou, 1980:The structure of a midlatitude squall line : a case study. J. Atmos. Sci., 37, 553-567. Rotunno, R., and J. B. Klemp,1982:The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136-151. ———, J. B. Klemp and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463-485. Roux, F., J. Testud, M. Payen and B. Pinty, 1984: West African squall-line ther- modynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104-3121. Sanders, F., and K. A. Emanuel, 1977 : The momentum budget and temporal evolution of a mesoscale convective system. J. Atmos. Sci., 34, 322-330. Schlesinger, R. E., 1973 : A numerical model of deep moist convection. PartⅠ: comparative experiment for variable ambient moisture and wind shear. J. Atmos. Sci., 30, 835-856. Smull, B. F., and R. A. Houze, Jr., 1985 : A midlatitude squall line with a trail- ing region of stratiform rain : radar and satellite observations. Mon. Wea. Rev., 113, 117-133. ———, and ———, 1987a : Dual-doppler analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci., 44, 2128-2148. ———, and ———, 1987b : Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889. Soong, S.-T., and Y. Ogura, 1980 : Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035-2050. Sun, W.-Y., 1980: A forward-backward time integration scheme to treat internal gravity waves. Mon. Wea. Rev., 108, 402–407. ———, 1993: Numerical experiments for advection equation. J. Comput. Phys., 108, 264-271. Takeda, T., 1971 : Numerical simulation of a precipitating convective cloud : the formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350-375. Thorpe, A. J., M. J. Miller and M.W. Moncrieff, 1982 : Two-dimensional con- vection in non-constant shear: a model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739-762. Weisman, M. L., and J. B. Klemp, 1982 : The dependence of numerically simu- lated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520. ———, and ———, 1984 : The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479-2498. Williams, D. T., 1948 : A surface micro-study of squall line thunderstorms. Mon. Wea. Rev., 76, No.11. Zipser, E. J., 1969 : The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799-814. ———, 1977 : Mesoscale and convective-scale downdrafts as distinct compo- nents of squall-line structure. Mon. Wea.Rev., 105, 1568-1589. 黃唯平,2002 : 二為非淨力模式對颮線之數值模擬。國立臺灣大學大氣科學研究所碩士論文 林李耀, 1997 : 颮線的數值模擬研究。 國立臺灣大學大氣科學研究所博士論文 謝銘恩, 2001 : 對稱性不穩度的數值研究。 國立臺灣大學大氣科學研究所碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36912 | - |
dc.description.abstract | 本研究內容主要是利用NTU-Purdue非靜力模式,對於颮線作二維架構的模擬,並且在初始條件的設定上,參考了過去相關颮線之數值模擬研究論文。在控制實驗裡面為模擬標準颮線系統,下邊界加入摩擦力,依然可以使系統達到到準恆定之狀態(quasi-steady state),即颮線可能並不一定是要靠不斷的激生對流胞才能維持系統,只要是在有完整之傾斜對流機制且在水氣能源源供給的情況下,颮線就有可能維持穩定而長生命期的狀態。測試一的結果可以發現地形會限制限制颮線發展,當颮線發展初期,所需要的低層擾動因為地形的阻擋,使得原本提供熱胞發展的水氣量減少。當颮線向前發展遭遇到地形時,受到地形抬升,雖然會使得內流匯入上沖流所以呈現更垂直的狀態,但是地形卻會使得內流深度變淺,加上上山地提供較少水氣的關係,加上此時後方加入乾燥的中低層氣流,更加不利於颮線的發展。測試二裡面,當範圍縮小時,因為發展空間不足,則會呈現出多胞系統的現象。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:22:22Z (GMT). No. of bitstreams: 1 ntu-94-R91229015-1.pdf: 5907468 bytes, checksum: 4cb28d96ef97049289ec70b81f4a8cd2 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要………………………………………………………………………………...….i
目錄…………………………………………………………………………………..ii 圖表目錄……………………………………………………………………………iv 第一章 研究目的 1-1 前言…………………………………………………………………………1 1-2 颮線發展理論之文回顧……………………………………………………2 1-3 研究目的…………………………………………………………………..10 第二章 模式計算之數值方法 2-1 數值模式介紹……………………………………………………………..12 2-2 預報方程及診斷方程……………………………………………………..12 2-3 網格架構…………………………………………………………………..14 2-4 邊界條件…………………………………………………………………..14 2-5 雲物理過程………………………………………………………………..15 2-6 模式積分方法……………………………………………………………..15 第三章 實驗設計與初始條件 3-1 模擬颮線之環境場………………………………………………………..19 3-2 模擬設計…………………………………………………………………..20 3-3 控制與敏感度測…………………………………………………………..21 第四章 模擬結果之分析 4-1 控制實驗之模擬結果……………………………………………………..23 4-2 測試一與控制個案的比較………………………………………………..29 4-3 測試二與控制個案的比較………………………………………………..31 第五章 結論 結論……………………………………………………………………...33 參考文獻……………………………………………………………………..35 圖表…………………………………………………………………………...41 誌謝…………………………………………………………………………...84 | |
dc.language.iso | zh-TW | |
dc.title | 地形對颮線發展影響的數值模擬研究 | zh_TW |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳清吉,柯文雄,林沛練,楊明仁 | |
dc.subject.keyword | 颮線,地形, | zh_TW |
dc.subject.keyword | squall line, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 5.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。