請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36909完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻 | |
| dc.contributor.author | Tzong-Hann Yang | en |
| dc.contributor.author | 楊宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:22:12Z | - |
| dc.date.available | 2008-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-17 | |
| dc.identifier.citation | 1. F. J. Rodríguez, N. Gómez, G. Perego, & X. Navarro, “ Highly permeable polylactide-caprolactone nerve guide enhance peripheral nerve regeneration through long gaps”, Biomaterials 20, 1489-1500, 1999
2. Courtney, James M.; Gaylor, John D.S.; Lowe, Gordon D.O.” In vitro investigation of the blood response to medical grade PVC and the effect of heparin on the blood response”, Biomaterials, v 21, n 1, Jan, 2000, p 89-96 3. J Chad and Wheal ,“Cellular Neurobiology-A practical approach”,Oxford university press publishing,pp11-15, 1991 4. R.S.CargillⅡ, K.C.Dee,and S.Malcolm,“An assessment of the strength of NG108-15 cell adhesion to chemically modified surface”,Biomaretials 20, 2417-2425, 1999 5. 楊台鴻, “乙烯-乙烯醇共聚合體造膜機構之探討”, 博士論文, 台大化工所, 1991 6. H. Strathmann, “Membrane separation processes”, J. Membrane Sci. 9, 121-189, 1981 7. R. E. Kesting, “Synthetic polymeric membrane”, John Wiley and Sons, New York, 1985 8. 鍾格瑞拉(Junquerira)原著, 王世晞, 陳德皓, 徐志宏編著, “基礎組織學”, 藝軒書局, 273-331, 1987 9. Y. S. Chen, C. L. Hsieh, C. C. Tsai, T. H. Chen, W. C. Cheng, C. L. Hu, & C. H. Yao, “Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin, & fibronectin”, Biomaterials 21, 1541-1547, 2000 10. S. Woerly, & D. J. Morassutti, “New aspects of neuroplantation”, Neurosurg Rev 16, 93-104, 1993 11. S. T. Carbonetto, & M. M. Gruver, “Nerve fiber growth on defined hydrogel substrates”, Science 216, 897-899, 1982 12. R. Vellamkonda, J. P. Raneri, N. Bouche, & P. Arbischer, “Hydrogel -based three-dimensional matrix for neural cell”, J. Biomed. Mater. Res. 29, 663-671, 1995 13. P, Aebischer, R. F. Valentini, P. Dario, C. Domenici, & P. M. Galletti, “Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy”, Brain Res. 436,165-168, 1987 14. W. F. A. Dunnen, B. V. D. Lei, J. M. Schakenraad, I. Stokroos, A. J. Pennings, & P. H. Robinson, “Long-term evaluation of nerve regeneration in a biodegradable nerve guide”, Microsurg. 14, 508-515, 1993 15. M. Borkenhagen, R. C. Stoll, P. Neuenschwander, U. W. Suter, P. Aebischer, “In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel”, Biomaterials 19, 2155-2165, 1998 16. S. Woerly, & R. Marchand, “Intracerebral implantation of synthetic polymer/biopolymer matrix: a new perspective for brain repair”, Biomaterials 11, 97-107 1990 17. Harsch, J. Calderon, R. B. Timmons, G. W. Gross, “Pulsed plasma deposition of allyamine on polysiloxane: a stable surface for neuronal cell adhesion”, J. Neurosci. Meth. 98, 135-144, 2000 18. K. K. Chittur, “Surface techniques to examine the biomaterial-host interface: an introduction to the papers”, Biomaterials 19, 301-305, 1998 19. S. Blawas & W. M. Reichert, “Protein patterning”, Biomaterilas 19, 595-609, 1998 20. S. Jo & K. Park, “Surface modification using silanated poly(ethylene glycol)s”, Biomaterials 21, 605-616, 2000 21. F. L. Christina, J. Patric, & B. Wesslen, “Polyurethane surfaces modified by amphiphilic polymers: effects on protein adsorption”, Biomaterials 21, 307-315, 2000 22. K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. B. Lee, H. Suh, & K. S. Choi, “Bacterial adhesion on PEG modified polyurethane surfaces”, Biomaterials 19, 851-859, 1998 23. V. Stolc & J. Podoba, “A water-insoluble trypsin derivative and its use as a trypsin column”, Nature 188, 856-857, 1960 24. H. H. Weetall, “Trypsin and papain covalently coupled to porous glass: preparation and characterization”, Science 166, 615-617, 1969 25. W. Marconi, F. Benvenuti, & A. Piozzi, “Covalent bonding of heparin to a vinyl copolymer for biomedical application”, Biomaterials 18, 885-890, 1997 26. P. J. Ranieri, R. Bellamkonda, E. J. Bekos, T. G. Vargo, J. A. Gardella, & P. Aebischer, “Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II”, J. Biomed. Mater. Res. 29, 779-785, 1995 27. M. Yamamoto, K. Kato, & Y. Ikada, “Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates”, J. Biomad. Mater. Res. 37, 29-36, 1997 28. J. A. Neff, K. D. Caldwell, & P. A. Tresco, “A novel method for surface modification to promote cell attachment to hydrophobic substrates”, J. Biomed. Mater. Res. 40, 511-519, 1998 29. J. A. Rowley, G. Madlambayan, & D. J. Monney, “Alignate hydrogels as synthetic extracellular matrix materials”, Biomaterials 20, 45-53, 1999 30. M. Zhang, T. Desai, & M. Ferrari, “Proteins and cells on PEG immobilized silicon surfaces”, Biomaterials 19, 953-960, 1998 31. R. I. Freshney, “Culture of animal cells”, pp 71-104 Wiley Liss, Inc., New York, 1994 32. Kondoh, K. Makino, & T. Matsuda, “Two-dimensional artificial extracellular matrix: bioadhesive peptide-immobilized surface design”, J. Appl. Polym. Sci. 47, 1983-1988, 1993. 33. K. Mann, A. T. Tsai, T. Scott-Burden, & J. L. West, “Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition”, Biomaterials 20, 2281-2286, 1999 34. J. A. Neff, P. A. Tresco, K. D. Caldwell, “Surface modification for controlled studies of cell-ligand interactions”, Biomaterials 20, 2377-2393, 1999 35. D. Beyer, M. Matsuzawa, A. Nakao, & W. Knoll, “Thin polymer layers as supports for hippocampal cell cultures”, Langmuir 14, 3030-3035, 1998 36. Y. Iwasaki, S. I. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, & K. Ishihara, “The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface”, Biomaterials 20, 2185-2191, 1999 37. D. Kleinfeld, K. H. Kahler, & P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates”, J. Neurosci 8, 4098-4120, 1988 38. Lochter, J. Taylor, K. H. Braunewell, J. Holm, & M. Schachner, “Control of neuronal morphology in vitro: interplay between adhesive substrate forces and molecular instruction”, J. Neurosci. Res. 42, 145-158, 1995 39. Northrop,J.H. and Kunitz,M.,“An Improved Type of MicroscopicElectrocataphoreisCell”,J.Gen.Physiol.,4,729-730, 1925 40. Amramson, H. A.,”Modification of the Northrop-Kunitz microelectrophoresis Cell”, J. Gen. Physiol.,12, 469-473,1929 41. Haydon,D.A.,Seaman, G.V.F.”Electrokinetic studies on the ultrastructure of human erythrocyte”, Arch. Biochem. Biophys 122,126-135,1967 42. Seaman, G.V.F., Heard, D.H. 1960. “The Surface of the Washed Human Erythrocyte as a Polyanion”. J. Gen. Physiol., 44:251-268 43. Mironov, S.L., Dolgaya, E.V. 1985. “Surface Charge of Mammalian Neurons as Revealed by Microelectrophoresis”, J. Membr. Biol., 86:107-202 44. R. S. Lasher, & I. S. Zagon, “The effect of potassium on neuronal differentiation in culture of dissociated newborn rat cerebellum”, Brain Res. 41, 482-488, 1972 45. Biji Balakrishnan, D.S. Kumar, Yasuhiko Yoshida, A. Jayakrishnan, “Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility”, Biomaterials 26 (2005) 3495–3502 46. K. K. Chittur, “FTIR/ATR for protein adsorption to biomaterial surfaces”, Biomaterials 19, 357-369, 1998 47. E. Blomberg, P. M. Glaesson, & J. C. Froberg, “Surfaces coated with protein layers: a surface force and ESCA study”, Biomaterials 19, 371-386, 1998 48. Christian Geismann, Mathias Ulbricht, “Photoreactive Functionalization of Poly(ethylene terephthalate) Track-Etched Pore Surfaces with Smart Polymer Systems”, Lehrstuhl fu¨r Technische Chemie II, Universita¨t Duisburg-Essen, D-45117 Essen, Germany 49. C. Volonte, M. T. Ciotti, & L. Battistini, “Development of a method for measuring cell number: Application to CNS primary neuronal cultures”, Cytometry 17, 274-276, 1994 50. H. S. Benjamin, L. Li, & P. Yoon, “Thymic peptide protects vascular endothelial cells from hydrogen peroxide-induced oxidant injury”, Life. Sci. 52, 1787-1796, 1993 51. J. Y. Koh & D. W. Choi, “Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assy”, J. Neurosci. Methods 20, 83-90, 1987 52. Seaman, G.V.F., and Heard, D. H.,”A Microelectrophoresis Chamber of Small Volumn for Use with Biological System”,Blood 18,599,1961 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36909 | - |
| dc.description.abstract | 本實驗是以乾式法將高分子聚氯乙烯製成薄膜之後,用化學改質的方式將表面接枝各式雙胺,來仿照聚離胺酸結構式,以討論材料表面官能基改變對於神經細胞的生長之影響。
由改質後的薄膜培養七天大大鼠的小腦顆粒神經細胞及PC12神經細胞株,並以MTT測試來比較細胞的活性,另外在掃瞄式電子顯微鏡的觀察來了解其細胞型態上的變化,最後再以細胞電泳來觀察材料與細胞表面電位的影響。 改質過後的聚氯乙烯,從較疏水的性質轉為親水性質,改質過後的聚氯乙烯薄膜對培養神經細胞均有較佳的細胞活性,且長天期培養後,趨勢也和一般的聚離胺酸相仿,證實改質後的聚氯乙烯薄膜能有效地促進神經細胞生長。 | zh_TW |
| dc.description.abstract | We prepared poly (vinyl chloride) (PVC) membranes by the dry processing, and then grafted diamine on the chloride group of these membrane surface by the way of chemical modification. To follow the structure of poly-D-lysine as a model and discuss the relationship between the functional groups of the modified material and the growth of neuron cells.
We cultured the cerebellum granule cells of the Wistar rat and PC12 cell lines on the modified membranes and compared with the relative activity and the cell morphology by MTT assay and scanning electron microscope (SEM). In addition, the relationship between the materials and the surface electrophoretic mobility of PC12 was observed by microelectrophoresis. The modification of PVC membranes were more hydrophilic than PVC, in general, have better relative activity. Moreover, in the long period culture they could have similarly condition of lysine.The graft of diamine on the modified PVC membrane could effectively induce the growth of neuron cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:22:12Z (GMT). No. of bitstreams: 1 ntu-94-R92548035-1.pdf: 2285260 bytes, checksum: 647188232073485396e5132de709f77d (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 序論 1
第二章 文獻回顧 3 2-1 高分子薄膜 4 2-1-1 薄膜的定義 4 2-1-2 薄膜的結構 4 2-1-3 薄膜的製備 5 2-2 神經細胞培養 6 2-2-1 神經系統簡介 7 2-2-2 培養神經細胞的用途 9 2-2-3 影響神經細胞生長的因素 10 2-3 薄膜表面改質 11 2-3-1 改質簡介 11 2-3-2 材料表面改質與細胞生長的關係 13 2-4 細胞電泳 16 第三章 實驗材料與方法 18 3-1 試藥與原料 18 3-2 儀器 22 3-3 試藥配製 28 3-4 薄膜製備 34 3-4-1 PVC薄膜製備 34 3-5 薄膜表面改質 34 3-6 材料表面化學鑑定 35 3-6-1 微量衰減全反射儀(Micro-ATR)觀察 35 3-6-2 薄膜表面親疏水性質 36 3-6-3薄膜表面接枝雙胺量分析 36 3-7 神經細胞培養 36 3-7-1 薄膜前處理 36 3-7-2 初代細胞培養(Primary Cell Culture)步驟 37 3-7-3 細胞株培養(Cell Line Culture) 38 3-7-4 MTT測試——評估神經細胞生長情形 38 3-8 PC12細胞電泳實驗 40 3-9 電子顯微鏡觀察 41 3-9-1 細胞固定 41 3-9-2臨界點乾燥. 42 3-9-3樣本鍍金 42 第四章 結果與討論 43 4-1 薄膜表面改質材料分析 43 4-1-1 衰減全反射儀(ATR)分析 43 4-1-2 薄膜表面接枝雙胺量 43 4-1-3 薄膜表面親疏水性質 44 4-2 神經細胞培 44 4-2-1 於各種改質PVC薄膜上培養PC12細胞 45 4-2-2 於各種改質PVC薄膜上培養小鼠顆粒型神經細胞 45 4-3 細胞電泳實驗 46 4-4神經細胞在不同材料上電子顯微鏡(SEM)照片 47 4-5PC12細胞在不同材料上電子顯微鏡(SEM)照片 48 第五章 結論 50 參考文獻 52 附錄 82 圖表索引 圖3-1 薄膜表面改質反應機構 61 圖3-2 薄膜表面改質反應流程 62 圖3-3 細胞電泳實驗裝置-電泳槽 63 圖4-1 PVC改質接枝雙胺薄膜表面之Micro-ATR吸收光譜 64 表4-1 PVC薄膜接枝雙胺量之分析 64 圖4-2 Orange Ⅱ檢量線 65 圖4-3 各種改質PVC薄膜培養PC12細胞之MTT測試結果 66 圖4-4 各種改質PVC薄膜培養小腦顆粒神經細胞之MTT測試結果 66 圖4-5 各種改質PVC薄膜培養四小時後PC12細胞 Mobility之變化 67 圖4-6將小腦顆粒型神經細胞培養於PVC第一天之SEM照片 68 圖4-7將小腦顆粒型神經細胞培養於PVC第三天之SEM照片 68 圖4-8 將小腦顆粒型神經細胞培養於PVC第五天之SEM照片 69 圖4-9 將小腦顆粒型神經細胞培養於PVC第七天之SEM照片 69 圖4-10 將小腦顆粒型神經細胞培養於PAEVA第一天之SEM照片 70 圖4-11 將小腦顆粒型神經細胞培養於PAEVA第三天之SEM照片 70 圖4-12 將小腦顆粒型神經細胞培養於PAEVA第五天之SEM照片 71 圖4-13 將小腦顆粒型神經細胞培養於PAEVA第七天之SEM照片 71 圖4-14 將小腦顆粒型神經細胞培養於PABVA第一天之SEM照片 72 圖4-15 將小腦顆粒型神經細胞培養於PABVA第三天之SEM照片 72 圖4-16 將小腦顆粒型神經細胞培養於PABVA第五天之SEM照片 73 圖4-17 將小腦顆粒型神經細胞培養於PABVA第七天之SEM照片 73 圖4-18 將小腦顆粒型神經細胞培養於PAHVA第一天之SEM照片 74 圖4-19 將小腦顆粒型神經細胞培養於PAHVA第三天之SEM照片 74 圖4-20 將小腦顆粒型神經細胞培養於PAHVA第五天之SEM照片 75 圖4-21 將小腦顆粒型神經細胞培養於PAHVA第七天之SEM照片 75 圖4-22 將PC12細胞培養於PVC第一天之SEM照片 76 圖4-23 將PC12細胞培養於PVC第三天之SEM照片 76 圖4-24 將PC12細胞培養於PVC第五天之SEM照片 77 圖4-25 將PC12細胞培養於PAEVA第一天之SEM照片 77 圖4-26 將PC12細胞培養於PAEVA第三天之SEM照片 78 圖4-27 將PC12細胞培養於PAEVA第五天之SEM照片 78 圖4-28 將PC12細胞培養於PABVA第一天之SEM照片 79 圖4-29 將PC12細胞培養於PABVA第三天之SEM照片 79 圖4-30 將PC12細胞培養於PABVA第五天之SEM照片 80 圖4-31 將PC12細胞培養於PAHVA第一天之SEM照片 80 圖4-32 將PC12細胞培養於PAHVA第三天之SEM照片 81 圖4-33 將PC12細胞培養於PAHVA第五天之SEM照片 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小腦顆粒神經細胞 | zh_TW |
| dc.subject | 雙胺 | zh_TW |
| dc.subject | 聚氯乙烯 | zh_TW |
| dc.subject | 離胺酸 | zh_TW |
| dc.subject | PC12神經細胞株 | zh_TW |
| dc.subject | 細胞電泳 | zh_TW |
| dc.subject | cerebellum granule cells | en |
| dc.subject | diamine | en |
| dc.subject | PC12 cell line | en |
| dc.subject | PVC | en |
| dc.title | 利用聚氯乙烯薄膜接枝雙胺仿聚離胺酸探討其對神經元細胞之影響 | zh_TW |
| dc.title | The Study of the Behavior of Neurons Cultured on PVC
Membranes Modified With Diamines Like PDL | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭廖平,尹相姝,孫一明 | |
| dc.subject.keyword | 小腦顆粒神經細胞,聚氯乙烯,雙胺,離胺酸,PC12神經細胞株,細胞電泳, | zh_TW |
| dc.subject.keyword | cerebellum granule cells,PVC,PC12 cell line,diamine, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
