Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻
dc.contributor.authorTzong-Hann Yangen
dc.contributor.author楊宗翰zh_TW
dc.date.accessioned2021-06-13T08:22:12Z-
dc.date.available2008-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-17
dc.identifier.citation1. F. J. Rodríguez, N. Gómez, G. Perego, & X. Navarro, “ Highly permeable polylactide-caprolactone nerve guide enhance peripheral nerve regeneration through long gaps”, Biomaterials 20, 1489-1500, 1999
2. Courtney, James M.; Gaylor, John D.S.; Lowe, Gordon D.O.” In vitro investigation of the blood response to medical grade PVC and the effect of heparin on the blood response”, Biomaterials, v 21, n 1, Jan, 2000, p 89-96
3. J Chad and Wheal ,“Cellular Neurobiology-A practical approach”,Oxford university press publishing,pp11-15, 1991
4. R.S.CargillⅡ, K.C.Dee,and S.Malcolm,“An assessment of the strength of NG108-15 cell adhesion to chemically modified surface”,Biomaretials 20, 2417-2425, 1999
5. 楊台鴻, “乙烯-乙烯醇共聚合體造膜機構之探討”, 博士論文, 台大化工所, 1991
6. H. Strathmann, “Membrane separation processes”, J. Membrane Sci. 9, 121-189, 1981
7. R. E. Kesting, “Synthetic polymeric membrane”, John Wiley and Sons, New York, 1985
8. 鍾格瑞拉(Junquerira)原著, 王世晞, 陳德皓, 徐志宏編著, “基礎組織學”, 藝軒書局, 273-331, 1987
9. Y. S. Chen, C. L. Hsieh, C. C. Tsai, T. H. Chen, W. C. Cheng, C. L. Hu, & C. H. Yao, “Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin, & fibronectin”, Biomaterials 21, 1541-1547, 2000
10. S. Woerly, & D. J. Morassutti, “New aspects of neuroplantation”, Neurosurg Rev 16, 93-104, 1993
11. S. T. Carbonetto, & M. M. Gruver, “Nerve fiber growth on defined hydrogel substrates”, Science 216, 897-899, 1982
12. R. Vellamkonda, J. P. Raneri, N. Bouche, & P. Arbischer, “Hydrogel -based three-dimensional matrix for neural cell”, J. Biomed. Mater. Res. 29, 663-671, 1995
13. P, Aebischer, R. F. Valentini, P. Dario, C. Domenici, & P. M. Galletti, “Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy”, Brain Res. 436,165-168, 1987
14. W. F. A. Dunnen, B. V. D. Lei, J. M. Schakenraad, I. Stokroos, A. J. Pennings, & P. H. Robinson, “Long-term evaluation of nerve regeneration in a biodegradable nerve guide”, Microsurg. 14, 508-515, 1993
15. M. Borkenhagen, R. C. Stoll, P. Neuenschwander, U. W. Suter, P. Aebischer, “In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel”, Biomaterials 19, 2155-2165, 1998
16. S. Woerly, & R. Marchand, “Intracerebral implantation of synthetic polymer/biopolymer matrix: a new perspective for brain repair”, Biomaterials 11, 97-107 1990
17. Harsch, J. Calderon, R. B. Timmons, G. W. Gross, “Pulsed plasma deposition of allyamine on polysiloxane: a stable surface for neuronal cell adhesion”, J. Neurosci. Meth. 98, 135-144, 2000
18. K. K. Chittur, “Surface techniques to examine the biomaterial-host interface: an introduction to the papers”, Biomaterials 19, 301-305, 1998
19. S. Blawas & W. M. Reichert, “Protein patterning”, Biomaterilas 19, 595-609, 1998
20. S. Jo & K. Park, “Surface modification using silanated poly(ethylene glycol)s”, Biomaterials 21, 605-616, 2000
21. F. L. Christina, J. Patric, & B. Wesslen, “Polyurethane surfaces modified by amphiphilic polymers: effects on protein adsorption”, Biomaterials 21, 307-315, 2000
22. K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. B. Lee, H. Suh, & K. S. Choi, “Bacterial adhesion on PEG modified polyurethane surfaces”, Biomaterials 19, 851-859, 1998
23. V. Stolc & J. Podoba, “A water-insoluble trypsin derivative and its use as a trypsin column”, Nature 188, 856-857, 1960
24. H. H. Weetall, “Trypsin and papain covalently coupled to porous glass: preparation and characterization”, Science 166, 615-617, 1969
25. W. Marconi, F. Benvenuti, & A. Piozzi, “Covalent bonding of heparin to a vinyl copolymer for biomedical application”, Biomaterials 18, 885-890, 1997
26. P. J. Ranieri, R. Bellamkonda, E. J. Bekos, T. G. Vargo, J. A. Gardella, & P. Aebischer, “Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II”, J. Biomed. Mater. Res. 29, 779-785, 1995
27. M. Yamamoto, K. Kato, & Y. Ikada, “Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates”, J. Biomad. Mater. Res. 37, 29-36, 1997
28. J. A. Neff, K. D. Caldwell, & P. A. Tresco, “A novel method for surface modification to promote cell attachment to hydrophobic substrates”, J. Biomed. Mater. Res. 40, 511-519, 1998
29. J. A. Rowley, G. Madlambayan, & D. J. Monney, “Alignate hydrogels as synthetic extracellular matrix materials”, Biomaterials 20, 45-53, 1999
30. M. Zhang, T. Desai, & M. Ferrari, “Proteins and cells on PEG immobilized silicon surfaces”, Biomaterials 19, 953-960, 1998
31. R. I. Freshney, “Culture of animal cells”, pp 71-104 Wiley Liss, Inc., New York, 1994
32. Kondoh, K. Makino, & T. Matsuda, “Two-dimensional artificial extracellular matrix: bioadhesive peptide-immobilized surface design”, J. Appl. Polym. Sci. 47, 1983-1988, 1993.
33. K. Mann, A. T. Tsai, T. Scott-Burden, & J. L. West, “Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition”, Biomaterials 20, 2281-2286, 1999
34. J. A. Neff, P. A. Tresco, K. D. Caldwell, “Surface modification for controlled studies of cell-ligand interactions”, Biomaterials 20, 2377-2393, 1999
35. D. Beyer, M. Matsuzawa, A. Nakao, & W. Knoll, “Thin polymer layers as supports for hippocampal cell cultures”, Langmuir 14, 3030-3035, 1998
36. Y. Iwasaki, S. I. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, & K. Ishihara, “The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface”, Biomaterials 20, 2185-2191, 1999
37. D. Kleinfeld, K. H. Kahler, & P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates”, J. Neurosci 8, 4098-4120, 1988
38. Lochter, J. Taylor, K. H. Braunewell, J. Holm, & M. Schachner, “Control of neuronal morphology in vitro: interplay between adhesive substrate forces and molecular instruction”, J. Neurosci. Res. 42, 145-158, 1995
39. Northrop,J.H. and Kunitz,M.,“An Improved Type of MicroscopicElectrocataphoreisCell”,J.Gen.Physiol.,4,729-730, 1925
40. Amramson, H. A.,”Modification of the Northrop-Kunitz microelectrophoresis Cell”, J. Gen. Physiol.,12, 469-473,1929
41. Haydon,D.A.,Seaman, G.V.F.”Electrokinetic studies on the ultrastructure of human erythrocyte”, Arch. Biochem. Biophys 122,126-135,1967
42. Seaman, G.V.F., Heard, D.H. 1960. “The Surface of the Washed Human Erythrocyte as a Polyanion”. J. Gen. Physiol., 44:251-268
43. Mironov, S.L., Dolgaya, E.V. 1985. “Surface Charge of Mammalian Neurons as Revealed by Microelectrophoresis”, J. Membr. Biol., 86:107-202
44. R. S. Lasher, & I. S. Zagon, “The effect of potassium on neuronal differentiation in culture of dissociated newborn rat cerebellum”, Brain Res. 41, 482-488, 1972
45. Biji Balakrishnan, D.S. Kumar, Yasuhiko Yoshida, A. Jayakrishnan, “Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility”, Biomaterials 26 (2005) 3495–3502
46. K. K. Chittur, “FTIR/ATR for protein adsorption to biomaterial surfaces”, Biomaterials 19, 357-369, 1998
47. E. Blomberg, P. M. Glaesson, & J. C. Froberg, “Surfaces coated with protein layers: a surface force and ESCA study”, Biomaterials 19, 371-386, 1998
48. Christian Geismann, Mathias Ulbricht, “Photoreactive Functionalization of Poly(ethylene terephthalate) Track-Etched Pore Surfaces with Smart Polymer Systems”, Lehrstuhl fu¨r Technische Chemie II, Universita¨t Duisburg-Essen, D-45117 Essen, Germany
49. C. Volonte, M. T. Ciotti, & L. Battistini, “Development of a method for measuring cell number: Application to CNS primary neuronal cultures”, Cytometry 17, 274-276, 1994
50. H. S. Benjamin, L. Li, & P. Yoon, “Thymic peptide protects vascular endothelial cells from hydrogen peroxide-induced oxidant injury”, Life. Sci. 52, 1787-1796, 1993
51. J. Y. Koh & D. W. Choi, “Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assy”, J. Neurosci. Methods 20, 83-90, 1987
52. Seaman, G.V.F., and Heard, D. H.,”A Microelectrophoresis Chamber of Small Volumn for Use with Biological System”,Blood 18,599,1961
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36909-
dc.description.abstract本實驗是以乾式法將高分子聚氯乙烯製成薄膜之後,用化學改質的方式將表面接枝各式雙胺,來仿照聚離胺酸結構式,以討論材料表面官能基改變對於神經細胞的生長之影響。
由改質後的薄膜培養七天大大鼠的小腦顆粒神經細胞及PC12神經細胞株,並以MTT測試來比較細胞的活性,另外在掃瞄式電子顯微鏡的觀察來了解其細胞型態上的變化,最後再以細胞電泳來觀察材料與細胞表面電位的影響。
改質過後的聚氯乙烯,從較疏水的性質轉為親水性質,改質過後的聚氯乙烯薄膜對培養神經細胞均有較佳的細胞活性,且長天期培養後,趨勢也和一般的聚離胺酸相仿,證實改質後的聚氯乙烯薄膜能有效地促進神經細胞生長。
zh_TW
dc.description.abstractWe prepared poly (vinyl chloride) (PVC) membranes by the dry processing, and then grafted diamine on the chloride group of these membrane surface by the way of chemical modification. To follow the structure of poly-D-lysine as a model and discuss the relationship between the functional groups of the modified material and the growth of neuron cells.
We cultured the cerebellum granule cells of the Wistar rat and PC12 cell lines on the modified membranes and compared with the relative activity and the cell morphology by MTT assay and scanning electron microscope (SEM). In addition, the relationship between the materials and the surface electrophoretic mobility of PC12 was observed by microelectrophoresis.
The modification of PVC membranes were more hydrophilic than PVC, in general, have better relative activity. Moreover, in the long period culture they could have similarly condition of lysine.The graft of diamine on the modified PVC membrane could effectively induce the growth of neuron cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:22:12Z (GMT). No. of bitstreams: 1
ntu-94-R92548035-1.pdf: 2285260 bytes, checksum: 647188232073485396e5132de709f77d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章 序論 1
第二章 文獻回顧 3
2-1 高分子薄膜 4
2-1-1 薄膜的定義 4
2-1-2 薄膜的結構 4
2-1-3 薄膜的製備 5
2-2 神經細胞培養 6
2-2-1 神經系統簡介 7
2-2-2 培養神經細胞的用途 9
2-2-3 影響神經細胞生長的因素 10
2-3 薄膜表面改質 11
2-3-1 改質簡介 11
2-3-2 材料表面改質與細胞生長的關係 13
2-4 細胞電泳 16
第三章 實驗材料與方法 18
3-1 試藥與原料 18
3-2 儀器 22
3-3 試藥配製 28
3-4 薄膜製備 34
3-4-1 PVC薄膜製備 34
3-5 薄膜表面改質 34
3-6 材料表面化學鑑定 35
3-6-1 微量衰減全反射儀(Micro-ATR)觀察 35
3-6-2 薄膜表面親疏水性質 36
3-6-3薄膜表面接枝雙胺量分析 36
3-7 神經細胞培養 36
3-7-1 薄膜前處理 36
3-7-2 初代細胞培養(Primary Cell Culture)步驟 37
3-7-3 細胞株培養(Cell Line Culture) 38
3-7-4 MTT測試——評估神經細胞生長情形 38
3-8 PC12細胞電泳實驗 40
3-9 電子顯微鏡觀察 41
3-9-1 細胞固定 41
3-9-2臨界點乾燥. 42
3-9-3樣本鍍金 42
第四章 結果與討論 43
4-1 薄膜表面改質材料分析 43
4-1-1 衰減全反射儀(ATR)分析 43
4-1-2 薄膜表面接枝雙胺量 43
4-1-3 薄膜表面親疏水性質 44
4-2 神經細胞培 44
4-2-1 於各種改質PVC薄膜上培養PC12細胞 45
4-2-2 於各種改質PVC薄膜上培養小鼠顆粒型神經細胞 45
4-3 細胞電泳實驗 46
4-4神經細胞在不同材料上電子顯微鏡(SEM)照片 47
4-5PC12細胞在不同材料上電子顯微鏡(SEM)照片 48
第五章 結論 50
參考文獻 52
附錄 82











圖表索引
圖3-1 薄膜表面改質反應機構 61
圖3-2 薄膜表面改質反應流程 62
圖3-3 細胞電泳實驗裝置-電泳槽 63
圖4-1 PVC改質接枝雙胺薄膜表面之Micro-ATR吸收光譜 64
表4-1 PVC薄膜接枝雙胺量之分析 64
圖4-2 Orange Ⅱ檢量線 65
圖4-3 各種改質PVC薄膜培養PC12細胞之MTT測試結果 66
圖4-4 各種改質PVC薄膜培養小腦顆粒神經細胞之MTT測試結果 66
圖4-5 各種改質PVC薄膜培養四小時後PC12細胞 Mobility之變化 67
圖4-6將小腦顆粒型神經細胞培養於PVC第一天之SEM照片 68
圖4-7將小腦顆粒型神經細胞培養於PVC第三天之SEM照片 68
圖4-8 將小腦顆粒型神經細胞培養於PVC第五天之SEM照片 69
圖4-9 將小腦顆粒型神經細胞培養於PVC第七天之SEM照片 69
圖4-10 將小腦顆粒型神經細胞培養於PAEVA第一天之SEM照片 70
圖4-11 將小腦顆粒型神經細胞培養於PAEVA第三天之SEM照片 70
圖4-12 將小腦顆粒型神經細胞培養於PAEVA第五天之SEM照片 71
圖4-13 將小腦顆粒型神經細胞培養於PAEVA第七天之SEM照片 71
圖4-14 將小腦顆粒型神經細胞培養於PABVA第一天之SEM照片 72
圖4-15 將小腦顆粒型神經細胞培養於PABVA第三天之SEM照片 72
圖4-16 將小腦顆粒型神經細胞培養於PABVA第五天之SEM照片 73
圖4-17 將小腦顆粒型神經細胞培養於PABVA第七天之SEM照片 73
圖4-18 將小腦顆粒型神經細胞培養於PAHVA第一天之SEM照片 74
圖4-19 將小腦顆粒型神經細胞培養於PAHVA第三天之SEM照片 74
圖4-20 將小腦顆粒型神經細胞培養於PAHVA第五天之SEM照片 75
圖4-21 將小腦顆粒型神經細胞培養於PAHVA第七天之SEM照片 75
圖4-22 將PC12細胞培養於PVC第一天之SEM照片 76
圖4-23 將PC12細胞培養於PVC第三天之SEM照片 76
圖4-24 將PC12細胞培養於PVC第五天之SEM照片 77
圖4-25 將PC12細胞培養於PAEVA第一天之SEM照片 77
圖4-26 將PC12細胞培養於PAEVA第三天之SEM照片 78
圖4-27 將PC12細胞培養於PAEVA第五天之SEM照片 78
圖4-28 將PC12細胞培養於PABVA第一天之SEM照片 79
圖4-29 將PC12細胞培養於PABVA第三天之SEM照片 79
圖4-30 將PC12細胞培養於PABVA第五天之SEM照片 80
圖4-31 將PC12細胞培養於PAHVA第一天之SEM照片 80
圖4-32 將PC12細胞培養於PAHVA第三天之SEM照片 81
圖4-33 將PC12細胞培養於PAHVA第五天之SEM照片 81
dc.language.isozh-TW
dc.subject小腦顆粒神經細胞zh_TW
dc.subject雙胺zh_TW
dc.subject聚氯乙烯zh_TW
dc.subject離胺酸zh_TW
dc.subjectPC12神經細胞株zh_TW
dc.subject細胞電泳zh_TW
dc.subjectcerebellum granule cellsen
dc.subjectdiamineen
dc.subjectPC12 cell lineen
dc.subjectPVCen
dc.title利用聚氯乙烯薄膜接枝雙胺仿聚離胺酸探討其對神經元細胞之影響zh_TW
dc.titleThe Study of the Behavior of Neurons Cultured on PVC
Membranes Modified With Diamines Like PDL
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭廖平,尹相姝,孫一明
dc.subject.keyword小腦顆粒神經細胞,聚氯乙烯,雙胺,離胺酸,PC12神經細胞株,細胞電泳,zh_TW
dc.subject.keywordcerebellum granule cells,PVC,PC12 cell line,diamine,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2005-07-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved