Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36903
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢宗良(Chung-Liang Chien)
dc.contributor.authorWei-Chia Tsengen
dc.contributor.author曾唯嘉zh_TW
dc.date.accessioned2021-06-13T08:21:53Z-
dc.date.available2005-08-02
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-19
dc.identifier.citationAlexander W. S. (1949) Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 72, 373–381.
Aoyama A., Frohli E., Schafere R., Klemenz R. (1993) aB-crystallin expression in mouse NIH3T3 fibroblasts: glucocorticoid responsiveness and involvement in thermal protection. Mol Cell Biol. 13, 1824–1835.
Benda P., Lightbody J., Sato G., Levine L., Sweet W. (1968) Differentiated rat glial cell strain in tissue culture. Science. 161, 370.
Bennardini F., Wrzosek A., Chiesi M. (1992) aB-crystallin in cardiac tissue: association with actin and desmin filaments. Circ. Res. 71, 288–294.
Bhat S. P., Nagineni C. N. (1989) aB subunit of lens-specific protein a-crystallin is present in other ocular and non-ocular tissue. Biochem Biophys Res Commun. 158, 319-325.
Bianchi R., Giambanco I., Donato R. (1993) S-100 Protein, but Not Calmodulin, Binds to the Glial Fibrillary Acidic Protein and Inhibits Its Polymerization in a Ca2+-dependent Manner. J. Biol. Chem. 268, 12669-12674.
Brenner M., Johnson A. B., Boespflug-Tanguy O., Rodriguez D., Goldman J. E., Messing A. (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 27, 117-120.
Chien C. L., Liu T. C., Ho C. L., Lu K. S. (2005) Overexpression of neuronal intermediate filament protein alpha-internexin in PC12 cells. J Neurosci Res. 80, 693-706.
Chin SS-M., Goldman J. E (1996) Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol. 55, 499–508
Djabali, K., deNechaud, B., Landon, F. and Portier, M. M. (1997). alphaB-crystallin interacts with intermediate filaments in response to stress. J.Cell Sci. 110, 2759-2769.
Dubin R. A., Wawrousek E. F., Piatigorsky J. (1989) Expression of the murine aB-crystallin gene is not restricted to the lens. Mol. Cell Biol. 9, 1083–1091
Eng L. F., Gerstl B., Vanderhaeghen J.J. (1970) A study of proteins in old multiple sclerosis plaques. Trans. Am. Soc. Neurochem. 1, 42.
Eng L. F., Vanderhaeghen J.J., Bignami A., Gerstl B. (1971) An acidic protein isolated from fibrous astrocytes 1971. Brain Res. 28, 351-354.
Eng L. F., and Ghirnikar, R. S. (1994) GFAP and astrogliosis. Brain Pathol. 4, 229–237.
Eng L. F., Lee Y. L., Kwan H., Brenner M., Messing A. (1998) Astrocytes Cultured From Transgenic Mice Carrying the Added Human Glial Fibrillary Acidic Protein Gene Contain Rosenthal Fibers. J Neurosci. Res. 53, 353-360.
Eng L. F., Ghirnikar R. S., Lee Y. L. (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res. 25, 1439-1451.
Eliasson C., Sahlgren C., Berthold C. H., Stakeberg J., Celis J. E., Betsholtz C., Eriksson J. E., Pekny M. (1999) Intermediate Filament Protein Partnership in Astrocytes. J. Biol. Chem. 274, 23996-24006.
Frisén, J., Johansson, C. B., Török, C., Risling, M., and Lendahl, U. (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J. Cell Biol. 131, 453-464.
Frizzo JK, Tramontina F, Bortoli E, Gottfried C, Leal RB, Lengyel I, Donato R, Dunkley PR, Goncalves CA. (2004) S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochem Res. 29, 735-740.
Gomi H., Yokoyama T., Fujimoto K., Ideka T., Katoh A., Itoh T., Itohara S. (1995) Mice devoid of the glial .brillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29–41.
Grcevic N., Yates P. O. (1957) Rosenthal fibers in tumours of the central nervous system. J Pathol Bacteriol. 73, 467-472.
Head M. W., Corbin E., Goldman J. E. (1994) Coordinate and independent regulation of aB-crystallin and HSP27 expression in response to physiological stress. J Cell Physiol. 159, 41–50.
Head M. W., Hurwitz L., Kegel K., Goldman J. E. (2000) AlphaB-crystallin regulates intermediate filament organization in situ. Neuroreport. 11, 361-365.
Herndon R. M., Rubinstein L. J., Freeman J. M. (1970) Light and electron microscopic observations on Rosenthal fibers in Alexander’s disease and in multiple sclerosis. J Neuropathol Exp Neurol. 29, 524-551.
Ho C. L., Martys J. L., Mikhailov A., Gundersen G. G., Liem R. K. (1998) Novel features of intermediate filament dynamics revealed by green fluorescent protein chimeras. J Cell Sci. 111, 1767-1778.
Horwitz J (1992) a-Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449–10453
Inada H., Tagashi H., Nakamura Y., Kaibushi K., Nagata K.,and Inagaki M. (1999) Balance between activities of Rho kinase and type 1 protein phosphatase modulates turnover of phosphorylation and dynamics of desmin/vimentin filaments. J. Biol. Chem 274, 34932–34939.
Inagaki M., Gonda Y., Nishizawa K., Kitamura S., Sato C., Ando S., Tanabe K., Kikuchi K., Tsuiki S., Nishi Y. (1990) Phosphorylation sites linked to glial filament disassembly in vitro locate in a non-alpha-helical head domain. J. Biol Chem 265, 4722–4729.
Inagaki M, Nakamura Y, Takeda M, Nishimura T, Inagaki N. (1994) Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol. 4, 239-243.
Ito H., Kamei K., Iwamoto I., Inaguma Y., Nohara D., Kato K. (2001) Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem. 276, 5346-5352.

Iwaki T., Kume-Iwaki A., Liem R. K., Goldman J. E. (1989) aB-crystallin is expressed in non-lenticular tissue and accumulates in Alexander’s disease. Cell 57, 71–78
Johnson. A. B. (2002) Alexander disease: a review and the gene. Int. J. Devl Neurosci. 20, 391-394.
Koyama Y., Goldman J. E. (1999) Formation of GFAP Cytoplasmic Inclusions in
Astrocytes and Their Disaggregation by aB-Crystallin. Am J Pathol. 154, 1563-1572.
Liang P., MacRae T. H. (1997) Molecular chaperones and the cytoskeleton. J Cell Sci. 110, 1431-1440.
Liedtke W., Edelman W., Bieri P. L., Chiu F. C., Cowan N. J., Kucherlapati R., and Raine C. S. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. (1996) Neuron 17, 607–615.
McCall M. A., Gregg R. G., Behringer R. R., Brenner, M., Delaney, C. L., Galbreth, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., and Messing, A. (1996) Targeted deletion in astrocyte intermediate filament (GFAP) alters neuronal physiology. Proc. Natl. Acad. Sci. USA 93, 6361–6366.
Muchowski P. J., Valdez M. M. and Clark J. I. (1999). aB-crystallin selectively targets intermediate filament proteins during thermal stress.Invest. Ophthalmol. Vis. Sci. 40, 951-958.
Nicholl I. D., Quinlan R. A. (1994) Chaperone activity of a-crystallins modulates intermediate filament assembly. EMBO J. 13, 945–953.
Pekny M., Levéen P., Pekna M., Eliasson C., Berthold C-H., Westermark B., Betsholtz C. (1995) Mice lacking glial .brillary acidic protein display astrocytes devoid of intermediate .laments but develop and reproduce normally. EMBO J. 14, 1590–1598.
Pekny M., Eliasson C., Chien C.L., Kindblom LG, Liem R, Hamberger A, Betsholtz C. (1998) GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res. 239, 332-343.
Pekny M., Stanness K., Eliasson C., Betsholtz C., and Janigro D. (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia 22, 390–400.
Perng M. D., Cairns L., van den IJssel P., Prescott A., Hutcheson A. M., Quinlan R. A. (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci. 112, 2099-2112.
Rodnight R., Gonçalves C. A., Wofchuk S. T., and Leal R. (1997) Control of the phosphorylation of the astrocyte marker glial fibrillary acidic protein (GFAP) in the immature rat hippocampus by glutamate and calcium ions: Possible key factor in astrocytic plasticity. Br. J. Med. Biol. Res. 30, 325-338.
Roser K., Bohn W., Giese G., Mannweiler K. (1991) Subclones of C6 rat glioma cells differing in intermediate filament protein expression. Exp Cell Res. 197, 200-206.
Rutka J., Murakami M., Dirks P., Hubbard S., Becker L., Fukuyama K., Jung S., Tsugu A. and Matsuzawa K. (1997) Role of glial filaments in cells and tumors of glial origin: a review. J. Neurosurg. 87, 420-430.
Salvador-Silva M., Ricard C. S., Agapova O. A., Yang P., Hernandez M. R. (2001) Expression of small heat shock proteins and intermediate filaments in the human optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. J Neurosci Res. 66, 59-73.
Shibuki K., Gomi H., Chen L., Bao S., Kim J. J., Wakatsuki H., Fujisaki T., Fujimoto K., Katoh A., Ikeda T., Chen C., Thompson R. F., and Itohara S. (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16, 587–599.
Takemura M, Gomi H, Colucci-Guyon E, Itohara S. (2002) Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci. 22, 6972-6979.
Toda M., Miura M., Asou H., Toya S., Uyemura K. Cell growth suppression of astrocytoma C6 cells by glial fibrillary acidic protein cDNA transfection. J. Neurochem. 63, 1975-1978.
Weinstein D. E., Shelanski M. L., Liem R. K. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol. 112, 1205-1213.
Wisniewski T., Goldman J. E. (1998) aB-crystallin is associated with intermediate filaments in astrocytoma cells. Neurochem. Res. 23, 385-392.
Zhang W. L., Tzuneishi S., Nakamura H. (2001) Induction of heat shock protein and its effects on glial differentiation in rat C6 glioblastoma cells. Kobe J. Med. Sci. 47, 77-95.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36903-
dc.description.abstract在神經膠細胞發育的過程中,有許多中間絲蛋白的表現已經被確認,包括nestin、vimentin以及glial fibrillary acidic protein (GFAP)。而GFAP則是成熟的星狀膠細胞中最主要的中間絲蛋白。在本研究中,主要探討GFAP在神經膠細胞中的型態排列,因此我們將大鼠的GFAP互補核酸序列(cDNA)在其前端接上綠色螢光蛋白的互補核酸序列,再轉殖進入大鼠神經膠細胞瘤C6細胞株中表現。在經過neomycin的相似藥物G418的篩選之後,我們建立了兩株穩定表達GFAP前端接有綠色螢光之融合蛋白(EGFP-GFAP)的細胞株,並命名為C6-EGFP-GFAP細胞。本實驗中先利用熱休克對於C6-EGFP-GFAP細胞進行處理,之後再利用免疫染色、穿透式電子顯微鏡術以及西方點墨法進行進一步的分析。
在暫時性的轉殖實驗中,EGFP-GFAP在轉殖後不久即會形成小型點狀聚集散佈於細胞質中,經過一段時間這些具有綠色螢光的蛋白會逐漸形成絲狀的結構。根據西方點墨法之實驗結果,nestin在C6-EGFP-GFAP細胞中的表現量與在穩定表達只有綠色螢光蛋白的C6-EGFP細胞,以及無轉殖的C6控制組細胞中相比,並沒有明顯的差異。但是vimentin的蛋白質表現量在C6-EGFP-GFAP細胞中卻有降低的情形。有趣的是,小熱休克蛋白αB-crystallin之蛋白質表現量在C6-EGFP-GFAP細胞中確有明顯增加的趨勢。另外,從細胞免疫染色的結果看來,C6-EGFP-GFAP細胞中的GFAP主要是分佈成分散而帶有細微的絲狀結構。
而在以熱休克處理之後,C6-EGFP-GFAP細胞中的GFAP會形成束狀的中間絲纖維結構;同時αB-crystallin蛋白也會和這些束狀的中間絲纖維呈現共同分佈的情況。
在C6細胞中的轉殖實驗看來,我們可以推測在神經膠細胞中GFAP的排列方式是動態的,而且可能被許多不同的機制所調控著。而由熱休克引發的GFAP重新排列之結果推論,小熱休克蛋白aB-crystallin在調控GFAP在細胞中的架構與排列扮演了重要的角色。
zh_TW
dc.description.abstractSome intermediate filament (IF) proteins expressed in the development of glia include nestin, vimentin, and glial fibrillary acidic protein (GFAP). Yet GFAP is the major intermediate filament protein of mature astrocytes. To determine the organization of GFAP in glial cells, the rat GFAP cDNA tagged with enhanced green fluorescent protein (EGFP) was transfected into rat C6 glioma cell line. After selection of neomycin analogue G418, two stable C6-EGFP-GFAP cell lines were established under. Stable C6-EGFP-GFAP cell lines with or without heat shock treatment were analyzed by immunocytochemistry, electron microscopy, and Western blot analysis.
In transient transfection study, EGFP-GFAP transiently expressed in C6 cells formed punctate aggregations in the cytoplasm right after transfection, but gradually the filamentous structure of EGFP-GFAP was observed. Comparing the C6-EGFP-GFAP stable clone with pEGFP-C1 transfected C6 stable clones and non-transfected C6 cells, the protein level of nestin in C6-EGFP-GFAP was similar to others; where as the level of vimentin was reduced in Western blotting. Interestingly, the expression level of small heat shock protein αB-crystallin in C6-EGFP-GFAP cells was also enhanced after transfection. Immunostaining patterns of C6-EGFP-GFAP cells showed that the distribution of GFAP was dispersed, as a pattern of little fine filamentous structure. However, after heat shock treatment, GFAP formed IF bundles in C6-EGFP-GFAP cells significantly. Meantime, αB-crystallin also colocalized with IF bundles of GFAP in C6-EGFP-GFAP cells.
From our observations in this study, it could be suggested that the organization of GFAP in glial cells was dynamic and regulated by several different mechanisms. The heat-induced GFAP reorganization we found suggested that small heat shock protein aB-crystallin may play a functional role to regulate the cytoarchitecture of GFAP.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:21:53Z (GMT). No. of bitstreams: 1
ntu-94-R92446003-1.pdf: 1333772 bytes, checksum: d2c60bed765ea26490913caa780bd8b0 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents壹、 中英文摘要 ------------------- 1
貳、 緒論-------------------------- 5
參、 實驗材料與方法 --------------- 8
肆、 實驗結果 --------------------- 14
伍、 討論 ------------------------- 21
陸、 參考文獻 --------------------- 29
柒、 圖表說明 --------------------- 35
dc.language.isoen
dc.title神經膠纖維酸性蛋白在C6細胞株過量表達之研究zh_TW
dc.titleOverexpression of glial fibrillary acidic protein in C6 glioma cell lineen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧國賢(Kuo-Shyan Lu),王淑美(Seu-Mei Wang),楊西苑(Hsi-Yuan Yang),何中良(Chung-Liang Ho)
dc.subject.keyword神經膠纖維酸性蛋白,晶體蛋白,神經膠腫瘤細胞株,綠色螢光蛋白,熱休克,zh_TW
dc.subject.keywordGFAP,αB-crystallin,C6 glioma cell line,EGFP,heat shock,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2005-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved