請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36880完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙福杉 | |
| dc.contributor.author | Meng-Yi Lin | en |
| dc.contributor.author | 林孟儀 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:20:41Z | - |
| dc.date.available | 2005-07-21 | |
| dc.date.copyright | 2005-07-21 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-19 | |
| dc.identifier.citation | References
1. Attias J, Urbach D, Gold S, et al. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res 1993;71(1-2):106-13. 2. Attias J, Furman V, Shemesh Z, et al. Impaired brain processing in noise-induced tinnitus patients as measured by auditory and visual event-related potentials. Ear Hear 1996;17(4):327-33. 3. Bruneau N, Roux S, Garreau B, et al. Frontal auditory evoked potentials and augmenting-reducing. Electroencephalogr Clin Neurophysiol 1985;62(5):364-71. 4. Bosshart PW. A multiplexed switched capacitor filter bank. IEEE Solid-State Circuits 1980;Dec;15(6):939:45. 5. Cohn NB, Dustman RE, Shearer DE. The effect of age, sex and interstimulus interval on augmenting and reducing of occipital VEPs. Electroencephalogr Clin Neurophysiol 1985;62(3):177-83. 6. Chen Y-Y. Current source density of field potential in the brain, M.S. thesis. National Taiwan University, Taipei, 1998. 7. Davis A, Refaie AE. Epidemiology of tinnitus. In: Tyler RS, ed. Tinnitus Handbook. San Diego: Singular Publishing Group; 2000:1–24. 8. Diesch E, Struve M, Rupp A, et al. Enhancement of steady-state auditory evoked magnetic fields in tinnitus. Eur J Neurosci 2004;19(4):1093-104. 9. Eggermont JJ. Central tinnitus. Auris Nasus Larynx 2003;30 Suppl:S7-12. 10. Gerken GM. Central tinnitus and lateral inhibition: an auditory brainstem model. Hear Res 1996;97:75-83. 11. Gerken GM, Hesse PS, Wiorkowski JJ. Auditory evoked responses in control subjects and in patients with problem-tinnitus. Hear Res 2001;157(1-2):52-64. 12. Hoke M, Feldmann H, Pantev C, et al. Objective evidence of tinnitus in auditory evoked magnetic fields. Hear Res 1989;37(3):281-6. 13. Hoke M. Objective evidence for tinnitus in auditory-evoked magnetic fields. Acta Otolaryngol Suppl 1990;476:189-94. 14. Hoke M, Pantev C, Lutkenhoner B, et al. Auditory cortical basis of tinnitus. Acta Otolaryngol Suppl 1991;491:176-81; discussion 182. 15. Jastreboff P, Gray W, Gold S. Neurophysiological approach to tinnitus patients. Am J Otol 1996;17:236–40. 16. Jeanmonod D, Magnin M, Morel A. Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 1996;119:363 75. 17. Jacobson GP, Ahmad BK, Moran J, et al. Auditory evoked cortical magnetic field (M100-M200) measurements in tinnitus and normal groups. Hear Res 1991;56(1-2):44-52. 18. Jaeger RC. Tutorial: analog data acquisition technology Part III. IEEE Micro 1982;Nov;20-35. 19. Komiya H, Eggermont JJ. Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol 2000;120(6):750-6. 20. Kadner A, Viirre E, Wester DC, et al. Lateral inhibition in the auditory cortex: an EEG index of tinnitus? Neuroreport 2002;25;13(4):443-6. 21. Lukas JH, Siegel J. Cortical mechanisms that augment or reduce evoked potentials in cats. Science 1977;198(4312):73-5. 22. Leung LS. Field Potentials in the Central Nervous System: Recording, Analysis and Modeling, HP-Neuromethods 1990;Sep;14:277-312. 23. Mühlnickel W, Elbert T, Taub E, et al. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 1998;95:10340 43. 24. Norena AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 2003;183(1-2):137-53. 25. Norena A, Cransac H, Chery-Croze S. Towards an objectification by classification of tinnitus. Clin Neurophysiol 1999;110(4):666-75. 26. Newman CW, Jacobson GP, Spitzer JB. Development of the Tinnitus Handicap Inventory. Arch Otolaryngol Head Neck Surg 1996;122(2):143-8. 27. Nicholson C, and Freeman J. A. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum Neurophysiol 1975;38:356-68. 28. Rangayyan RM. 'Biomedical Signal Analysis—A case-study Approach,' IEEE, Inc.; 2002. 29. Rauschecker JP. Auditory cortical plasticity: a comparison with other sensory systems. TINS 1999;22:74 80. 30. Rajan, R. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nature Neurosci 1998;1:138 43. 31. Smith S, Microelectronic circuits 4th edition. Oxford University Press, Inc., New York;1998. 32. Syka, J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 2002;82:601 36. 33. Tyler RS, Conrad-Armes D. Masking of tinnitus compared to masking of pure tones. J Speech Hear Res 1984;27(1):106-11. 34. Tietze U, Schenk Ch. Electronic circuits: design and applications. Springer-Verlag Berlin, Heidelberg;1991. 35. Webster JG. 'Medical Instrumentation—Application and Design, Third Edition,' John Wiley & Sons, Inc.; 1998. 36. Wallhäusser-Franke E, Braun S, Langner G. Salicylate alters 2-DG uptake in the auditory system: a model for tinnitus? Neuroreport 1996;7:1585 588. 37. Weisz N, Voss S, Berg P, et al. Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level. BMC Neurosci 2004;Mar 4;5(1):8. 38. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67(6):361-70. 39. 張智星,“Matlab程式設計與應用”,清蔚科技,新竹市,民89。 40. 史麗珠、林莉華,“基礎生物統計學”,學富文化,台北市,民88。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36880 | - |
| dc.description.abstract | 耳鳴常出現在較高的年齡層,在一般大眾中有高達10%的比例罹患耳鳴,並且有向上攀升的趨勢。在臨床診斷上,由於對耳鳴的機轉並不清楚且缺乏一套客觀的診斷方式,醫師在診斷上是有困難的。為了能夠瞭解耳鳴在大腦活動上的表現,並且用以作為客觀的診斷方式,我們藉由多通道的腦波記錄來研究耳鳴患者在事件相關電位(Event-Related Potentials)上的表現,並且與正常人的表現做比較。本研究蒐集了16個耳鳴患者及14個正常人的事件相關電位,且全部的受測者都不具有明顯的聽力損失。所使用的刺激事件分別為0.5、1、2以及4 kHz 的聲音,每種頻率中又包含五種不同聲音強度的刺激,包括50、56、62、68以及 74 dB SBL。在資料分析方面,以事件相關電位成份分析法(ERP components analysis)分析,使用N100與P200成份之間的振幅差以及N100的延遲時間計算出每一種刺激頻率下的強度相依關係(intensity dependence),並且在耳鳴與正常人的實驗群組中互相比較。除了事件相關電位成份分析法,本研究也使用等電位拓樸圖(isoelectric topography)與電流源密度拓樸圖(current source density topography)的分析法,分別可以提供電偶極(dipoles)與神經反應中心的資訊。目前的分析結果顯示耳鳴患者與正常人在事件相關電位中的N100與P200之振幅差以及N100的延遲時間上並無明顯差異(t-test,p > 0.05)。初步比較等電位拓撲圖與電流源密度拓撲圖,同樣得到在耳鳴患者與正常人沒有顯著差異的結果。
大多數的多通道腦波記錄系統都相當昂貴,由於目前多通道系統大都是將單一通道的電路複製做成多組,因此系統的體積、耗電量(power consumption)及成本都會隨著通道數目的增加而大幅提高。為了克服此問題,本論文的另一部分是開發以分時多工架構實現多通道記錄功能的方法。利用此方法,只需使用單一放大電路與濾波電路就能夠處理多通道的輸入訊號而達到多通道記錄的功能。在放大級與濾波級的多工架構設計與考量上都會加以討論。在分時多工架構下所造成的現象為濾波器的截止頻率會下降以及增益衰減。造成這些現象背後的原因都會詳加解釋並且對這些現象以數學式子描述。利用三種不同型態的濾波器來瞭解在分時多工架構下濾波器的響應,包括一階低通、一階高通、二階低通濾波器,並與前面的推論作比較與驗證。此外也推導出這種架構的濾波器轉換函數,並且建立一套完整的設計準則。 | zh_TW |
| dc.description.abstract | Tinnitus is prevalent among 10% of the general population and tends to increase in frequency among older ages. It has been difficult for the physicians to make a clinical evaluation of this annoying symptom since there lacks an objective approach to the diagnosis. To investigate the brain processes underlying tinnitus as well as to evaluate the symptoms objectively, multi-channel EEG recording is applied to investigate the appearance of ERPs (Event-Related Potentials) in tinnitus patients. ERPs were recorded from sixteen tinnitus patients and fifteen normal controls. All subjects have no significant hearing loss. A tone burst of 0.5, 1, 2, and 4 kHz are used as auditory stimuli. The stimuli of each frequency are presented at five different intensities: 50, 56, 62, 68, and 74 dB SBL. The intensity dependences of the N100/P200 amplitude and N100 latency are calculated for each frequency in each group. Aside from the component analysis, the isoelectric topography and current source density topography are developed to observe dipoles and active origins’ distribution of cortical activity respectively. The results show no significant differences in N100/P200 amplitude and N100 latency between the tinnitus and normal groups (two-tailed Student’s t-test, p > 0.05). There is also, no gross difference of isoelectric topography and current density topography between the two groups.
Most multi-channel recording systems are very expensive. They are usually constructed by duplicating single-channel hardware into multiple copies. Their size, power consumption, and cost increase rapidly as the number of channels multiply. To resolve this problem, the other part of this thesis is dedicated to developing a time-division-multiplexing (TDM) system for multi-channel recording. By utilizing the TDM method, multiple input signals can be conditioned by using a single amplifier and filter stage. The design considerations of the multiplexing amplifier and filter stages are discussed herein. The phenomena in the filter caused by the TDM architecture are the drop of cutoff frequency and the attenuation of gain. The underlying mechanism of the phenomena is depicted and modeled with mathematics, whereby the responses of several types TDM filter were evaluated for understanding the behavior, including first-order low-pass, first-order high-pass, and second-order low-pass filters. The transfer function of such TDM-type filters are derived and verified, in addition to their design rule. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:20:41Z (GMT). No. of bitstreams: 1 ntu-94-R92548015-1.pdf: 1322995 bytes, checksum: a90ab37ce8fe4aeebea46cf166e5849d (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Contents
中文摘要 ...............................................Ⅰ ABSTRAT ................................................Ⅲ CONTENTS ...............................................Ⅴ LIST OF FIGURES ........................................Ⅶ PART I ANALYSIS OF TINNITUS BY MULTI-CHANNEL EEG .............. 1 1.1. INTRODUCTION .................................. 1 1.2. EXPERIMENTAL SETUP ............................ 4 1.2.1. Subject selection .............................. 4 1.2.2. Evaluation of tinnitus/hyperacusis and hearing ..4 1.2.3. Event-Related Potentials recording ............. 5 1.3. ANALYSIS METHODS .............................. 6 1.3.1. ERP components analysis ........................ 6 1.3.2. Isoelectric topography ..........................7 1.3.3. Current source density topography .............. 7 1.4. ANALYSIS PLATFORM ............................. 9 1.5. RESULTS ...................................... 14 1.6. DISCUSSION AND CONCLUSIONS ................... 25 PART II DESIGN OF TIME-DIVISION-MULTIPLEXING SYSTEM FOR MULTI-CHANNEL RECORDING ..................................... 29 2.1. INTRODUCTION .................................... 29 2.2. TIME DIVISION MULTIPLEXING ...................... 31 2.3. MULTIPLEXING CONSIDERATION ...................... 33 2.4. DISCONTINUOUS OPERATION AND DISCRIPTION ......... 37 2.5. CUTOFF FREQUENCY DROP ........................... 41 2.6. GAIN ATTENUATION ................................ 44 2.7. FREQUENCY RESPONSE AND TRANSFER FUNCTION ........ 46 2.7.1 1st-order low-pass filter ..................... 46 2.7.2. 1st-order high-pass filter ................... 49 2.7.3. 2nd-order low-pass filter .................... 51 2.8. DISCUSSION AND CONCLUSIONS ...................... 54 REFERENCES ............................................ 56 | |
| dc.language.iso | en | |
| dc.subject | 等電位圖 | zh_TW |
| dc.subject | 耳鳴 | zh_TW |
| dc.subject | 事件相關電位 | zh_TW |
| dc.subject | 電流源密度 | zh_TW |
| dc.subject | 多工 | zh_TW |
| dc.subject | 多通道記錄 | zh_TW |
| dc.subject | Tinnitus | en |
| dc.subject | Multi-channel Recording | en |
| dc.subject | Multiplexing | en |
| dc.subject | Current Source Density | en |
| dc.subject | Isoelectric Topography | en |
| dc.subject | Event-Related Potential | en |
| dc.title | 耳鳴之多通道腦電位分析及記錄系統之開發 | zh_TW |
| dc.title | Analysis of Tinnitus by Multi-channel EEG and Development of Recording System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李仲毅 | |
| dc.contributor.oralexamcommittee | 郭德盛,鄭國順,黃基礎,謝明憲 | |
| dc.subject.keyword | 耳鳴,事件相關電位,等電位圖,電流源密度,多工,多通道記錄, | zh_TW |
| dc.subject.keyword | Tinnitus,Event-Related Potential,Isoelectric Topography,Current Source Density,Multiplexing,Multi-channel Recording, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
