Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3687
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor久米朋宣
dc.contributor.authorTing-Wei Changen
dc.contributor.author張庭維zh_TW
dc.date.accessioned2021-05-13T08:35:57Z-
dc.date.available2016-08-30
dc.date.available2021-05-13T08:35:57Z-
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citationAnenberg, S. C., Horowitz, L. W., Tong, D. Q. and West, J. J. (2010). An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect Environmental Health Perspectives, 118 (9), 1189-1195.
Biesenthal, T. A., Wu, Q., Shepson, P. B., Wiebe, H. A., Anlauf, K. G. and Mackay, G. I. (1997). A study of relationships between isoprene, its oxidation products, and ozone, in the Lower Fraser Valley, BC. Atmospheric Environment, 31 (14), 2049-2058.
Chiou, C. R., Chen, T. H., Lin, Y., Yang, Y. and Lin, S. (2009). Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. Quarterly Journal of Chinese Forestry, 42 (1), 89-105.
Claeys, M., Wang, W., Ion, A. C., Kourtchev, I., Gelencsér, A. and Maenhaut, W. (2004). Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmospheric Environment, 38 (25), 4093-4098.
Crespo, E., Graus, M., Gilman, J. B., Lerner, B. M., Fall, R., Harren, F. J. and Warneke, C. (2013). Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop. Atmospheric Environment, 65, 61-68.
Dreyfus, G. B., Schade, G. W. and Goldstein, A. H. (2002). Observational constraints on the contribution of isoprene oxidation to ozone production on the western slope of the Sierra Nevada, California. Journal of Geophysical Research, 107 (D19), 4365
Fuhrer, J. (2008). Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96 (2), 173-194.
Geron, C., Harley, P. and Guenther, A. (2001). Isoprene emission capacity for US tree species. Atmospheric Environment, 35 (19), 3341-3352.
Guenther, A. B., Monson, R. K. and Fall, R. (1991). Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. Journal of Geophysical Research, 96 (D6), 10799-10808.
Guenther, A., Zimmerman, P. R. and Harley, P. C., (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis. Journal of Geophysical Research, 98 (D7), 12609–12617.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J. and Zimmerman, P. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100 (D5), 8873-8892
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K. and Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development Discussions, 5 (2), 1503-1560.
Harley, P. C., Monson, R. K. and Lerdau, M. T. (1999). Ecological and evolutionary aspects of isoprene emission from plants. Oecologia, 118 (2), 109-123.
He, C., Murray, F. and Lyons, T. (2000). Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia. Atmospheric Environment, 34 (4), 645-655.
Hsieh, I. F. (2013). Temporal variation in soil CO2 efflux and the controlling factors in a Moso bamboo forest, central Taiwan. Master thesis in National Taiwan Unversity.
Kuzma, J. and Fall, R. (1993). Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiology, 101 (2), 435-440.
Lin, P. H. (2015). Root respiration and its temperature sensitivity in Moso Bamboo Forest, Central Taiwan. Master thesis in National Taiwan Unversity.
Logan, B. A. and Monson, R. K. (1999). Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced by exposure to exogenous isoprene. Plant Physiology, 120 (3), 821-825.
Loreto, F. (2001). Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiology, 126 (3), 993-1000.
Loreto, F. and Sharkey, T. D. (1990). A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta, 182 (4), 523-531.
Middleton, P. (1995) Sources of air pollutants, in H. B. Singh (Ed.), Composition, Chemistry, and Climate of the Atmosphere (pp. 88-119). Van Nostrand Reinhold, New York.
Monson, R. K. and Fall, R. (1989). Isoprene emission from aspen leaves: Influence of environment and relation to photosynthesis and photorespiration. Plant Physiology, 90 (1), 267-274.
Monson, R. K., Grote, R., Niinemets, Ü and Schnitzler, J. (2012). Modeling the isoprene emission rate from leaves. New Phytologist, 195 (3), 541-559.
Nambiar, E. K. and Fife, D. N. (1991). Nutrient retranslocation in temperate conifers. Tree Physiology, 9 (1-2), 185-207.
Niinemets, Ü, Monson, R. K., Arneth, A., Ciccioli, P., Kesselmeier, J., Kuhn, U., Noe, S. M., Peñuelas, J. and Staudt, M. (2010a). The leaf-level emission factor of volatile isoprenoids: Caveats, model algorithms, response shapes and scaling. Biogeosciences, 7 (6), 1809-1832.
Niinemets, Ü, Copolovici, L. and Hüve, K. (2010b). High within-canopy variation in isoprene emission potentials in temperate trees: Implications for predicting canopy-scale isoprene fluxes. Journal of Geophysical Research, 115 (G4), G04029.
Niinemets, Ü, Sun, Z. and Talts, E. (2015). Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves. Plant, Cell & Environment, 38 (12), 2707-2720.
Okumura, M., Tani, A., Kominami, Y., Takanashi, S., Kosugi, Y., Miyama, T., and Tohno, S., (2008). Isoprene emission characteristics of Quercus serrata in a deciduous broad-leaved forest. Journal of Agricultural Meteorology, 64 (2), 49-60.
Okutomi, K., Shinoda, S. and Fukuda, H. (1996). Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 7 (5), 723-728.
Poisson, N., Kanakidou, M. and Crutzen, P. J. (2000). Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. Journal of Atmospheric Chemistry, 36 (2) 157–230.
Rasmussen, R.A. and Jones, C.A. (1973). Emission of isoprene from leaf discs of Hamamelis. Phytochemistry 12 (1), 15-19.
Rasulov, B., Hüve, K., Bichele, I., Laisk, A. and Niinemets, Ü. (2010). Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: A kinetic analysis. Plant Physiology, 154 (3), 1558-1570.
Sanadze, G. A. and Kalandaze, A. N. (1966). Light and temperature curves of the evolution of C5H8. Soviet Plant Physiology, 13 (3), 458-461.
Sanadze, G. A. (1964). Conditions for diene C5H8 (isoprene) emission from leaves. Fiziologiya Rastenii (Soviet Plant Physiology English Translation), 2 (1), 49–52.
Sanderson, M. G., Jones, C. D., Collins, W. J., Johnson, C. E. and Derwent, R. G. (2003). Effect of climate change on isoprene emissions and surface ozone levels. Geophysical Research Letters, 30 (18), 1936.
Schwede, D., G. Pouliot, and Pierce, T. (2005), Changes to the Biogenic Emissions Inventory System version 3 (BEIS3). In: 4th CMAS Models-3 Users’ Conference, Chapel Hill, N. C., 26-28 September. Available at: http://www.cmascenter.org/html/2005_conference/abstracts/2_7.pdf
Schwender, J., Zeidler, J., Gröner, R., Müller, C., Focke, M., Braun, S., Lichtenthaler, F. W. and Lichtenthaler, H. K. (1997). Incorporation of 1-deoxy- d -xylulose into isoprene and phytol by higher plants and algae. FEBS Letters, 414(1), 129-134.
Shiraiwa, M., Selzle, K. and Pöschl, U. (2012). Hazardous components and health effects of atmospheric aerosol particles: Reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radical Research, 46 (8), 927-939.
Sharkey, T. D. (1996). Isoprene synthesis by plants and animals. Endeavour, 20 (2), 74-78.
Sharkey, T. D. and Singsaas, E. L. (1995). Why plants emit isoprene. Nature, 374 (6525), 769-769.
Sharkey, T. D. and Yeh, S. (2001) Isoprene emission from plants. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 407–436.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P. and Knorr, W. (2014). Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14 (17), 9317-9341.
Singsaas, E. L. and Sharkey, T. D. (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant, Cell and Environment, 21 (11) 1181-1188.
Siwko, M. E., Marrink, S. J., Vries, A. H., Kozubek, A., Uiterkamp, A. J. and Mark, A. E. (2007). Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1768 (2), 198-206.
Sungkaew, S., Stapleton, C. M., Salamin, N. and Hodkinson, T. R. (2008). Non-monophyly of the woody bamboos (Bambuseae; Poaceae): A multi-gene region phylogenetic analysis of Bambusoideae s.s. Journal of Plant Research, 122 (1), 95-108.
Tani, A., and Kawawata, Y., (2008) Isoprene emission from the major native Quercus spp. in Japan. Atmospheric Environment, 42 (19), 4540–4550.
Tingey, D. T., Manning, M., Grothaus, L. C. and Burns, W. F. (1979). The influence of light and temperature on isoprene emission rates from live oak. Physiol Plant Physiologia Plantarum, 47 (2), 112-118.
Tingey, D. T., Evans, R. and Gumpertz, M. (1981). Effects of environmental conditions on isoprene emission from live oak. Planta, 152 (6), 565-570.
Lichtenthaler, H. K., Zeidler, J., May, H. U. and Lichtenthaler, F. W. (1997). Isoprene emitted by plants is synthesized via the new GAP ⁄ pyruvate pathway of isoprenoid formation. Plant Physiology, 114, 940.
Loreto, F. and Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127 (4), 1781-1787.
Wang, Y., Bai, S., Binkley, D., Zhou, G. and Fang, F. (2016). The independence of clonal shoot’s growth from light availability supports moso bamboo invasion of closed-canopy forest. Forest Ecology and Management, 368, 105-110.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3687-
dc.description.abstract異戊二烯(2-甲基-1,3-丁二烯)為一種揮發性有機化合物(Volatile organic compound, VOC,該物質因會間接地造成空氣汙染和強化溫室效應而被關注。在過去研究中指出植物會為減緩熱傷害和暴露於臭氧造成的傷害等目的而製造並放出異戊二烯。因植物放出之異戊二烯總量極大,對於放出量及速度的估計十分重要。過去研究也指出,植物的異戊二烯放出速率受到許多外在環境因子(例如,溫度和光強度)和生理因子(例如,一樹冠層中的位置)。在過去,已有相當多對於植物異戊二烯放出的模型,卻多無考慮竹類之特性,一概以樹木或草地論之;但竹類為東亞地區最重要的森林組成之一,尤其孟宗竹因近年有快速擴張與入侵其他森林而受關注,基於其重要性,應要有針對之研究。因此,本研究以:一、確認孟宗竹是否有異戊二烯放出的能力;二、瞭解孟宗竹林的異戊二烯放出的空間變異;三、瞭解孟宗竹林的異戊二烯放出的時間變異;四、基於實驗資料製作適用於孟宗竹的放出速率模型。本研究利用葉箱法進行異戊二烯採樣。實驗在台灣中部,南投縣溪頭實驗林的竹類標本園及鄰近竹蘆的孟宗竹林進行。在2014年11月及12月,對14種竹類進行採樣;其中,綠竹(B. oldhami)、孟宗竹(P. Edulis)和石竹(P. lithophila Hayata) 有可觀的異戊二烯放出速率(32.02, 23.20 and 38.30 nmol m-2 s-1);麻竹屬(Dendrocalamus)和剛竹屬(Phyllostachys)在實驗中的全部物種皆有放出能力;在實驗中,斑葉紅寒竹(C. marmorea cv. Variegata)、業平竹(S. fastuosa)、暹羅竹(T. siamensis)和玉山箭竹(Yushania niitakayamensis)沒有偵測到放出。在2015年11月、12月及隔年3月,本研究對不同垂直位置上的放出速率進行測試;然而,在7個實驗個體中,僅有一個個體在樹冠層底部與頂部的放出速率有統計顯著差異(P= 0.041);但若在修除個體差異後將7個個體的資料混和測試的話,不同高度是有顯著的放出速率差異的(P= 0.0052),且由低處到高處放出速率逐漸上升。在2015年9月到2016年3月間測試異戊二烯放出速率隨光度的變化和月間變異,本研究發現每個月放出速率都有類似的趨勢隨著光強度增加而上升並在一定的光強度後達到放出速率的飽和狀態,但2015年7月到11月的放出速率明顯高於12月到隔年3月;在每個月光強度一致(PPFD = 1000 mol m-2 s-1)的測量中,平均放出速率大致與平均葉溫的趨勢相同,但在2016年2月和3月出現不一致,故可能有其他影響因子造成的季節變異存在。另外,本研究利用月間測量的資料,製作考慮葉溫、光強度影響的孟宗竹異戊二烯放出速率模型;其中,以Gaussian分布來模擬葉溫影響並以Guenther等人(1993)描述的光強度影響分布來模擬光強度影響有較好的表現;此模型在從2015年9月到2016年3月每個月的RMSE分別為38.79、31.26、86.24、46.24、44.16、60.89和62.53。整體來說,本研究建立了孟宗竹林樹冠規模的異戊二烯放出估計方法的基礎,並建議為準確估計全年樹冠規模的異戊二烯放出量,在葉溫和光強度以外需考慮樹冠高層間變異和物候和生理因子的影響。zh_TW
dc.description.abstractIsoprene (2-methyl-1, 3-butadiene), which is known as a volatile organic compound (VOC), has strong impacts on air pollution and global warming. Former studies indicated that plant can emit isoprene for multiple purposes including enhancing thermotolerance and preventing ozone-exposing damages. According to former estimations, the isoprene emission amount from plants was enormous, suggesting the importance of estimating fluxes of isoprene emission from plants. As well, former studies indicated that environmental factors (e.g., leaf temperature, light intensity) and physiological factors (e.g., position in the canopy) can affect isoprene emissions. Previously, several studies proposed models for estimating isoprene emission from plants, yet they did not consider bamboos. Nevertheless, moso bamboo is one of the dominant species in eastern Asia, currently showing rapid expansion and invasion into other forests. Hence, the objectives of this study were 1) to identify the ability of isoprene emission in moso bamboos and then to clarify 2) spatial and 3) temporal variations in isoprene emission in a moso maboo forest. Also, 4) this study developed a model reproducing the temporal changes in isoprene emission from the bamboos based on the measurements. This study conducted isoprene measurements based on a leaf chamber method in a bamboo specimen garden and a bamboo forest in Xitou Experimental Forest, central Taiwan. First, by checking 14 species of bamboo in November and December 2014, this study revealed that B. oldhami, P. Edulis and P. lithophila Hayata had significant isoprene emission which were about 32.02, 23.20 and 38.30 nmol m-2 s-1, respectively. All species of Dendrocalamus and Phyllostachys showed isoprene emission detected, but the isoprene emissions were not detected in C. marmorea cv. Variegata, S. fastuosa, T. siamensis and Yushania niitakayamensis. As the result, this study confirmed significance of isoprene emission in moso bamboos. Second, this study examined the pattern of vertical variations in isoprene emission within canopy under the standardized environmental conditions, and only one individual showed significant difference in isoprene emission rates between canopy top and bottom (P= 0.041) if we test the significance in each individual; however, if we consider total seven individuals measured, that is, canopy top and bottom tended to show higher and lower isoprene emission rates, respectively (P= 0.0052). Third, by measuring isoprene emission rate under fixed light intensity levels, the seasonal variation in isoprene emission during September 2015 to March 2016 increased with light intensity differently between months; where December 2015, January, February and March 2016 have lower emission at the given light level than those of September, October and November 2015. The seasonal variation in isoprene emission rates at the same light intensity (PPFD = 1000 mol m-2 s-1) generally corresponded to that of leaf temperature, although some discrepancy was found in February and March 2016, suggesting that there were other factors affecting the seasonal variation. Fourth, to develop a model, this study considered the effect of leaf temperature and light intensity, and better performances found in using the function based on Gaussian distribution for leaf temperature and the function for light-intensity proposed by Guenther et al. (1993) in the fitness to the measurements. The RMSE of each month in the model were 38.79, 31.26, 86.24, 46.24, 44.16, 60.89 and 62.53 in September 2015 to March 2016, respectively. Overall, this study established a foundation of estimating total amount of canopy-scale isoprene emission in the moso bamboo forest. For precise estimation, an isoprene emission model for annual canopy-scale should consider not only the effect of leaf temperature and light intensity but also variations in potential emission rates within canopy and phenological and physiological effects in spring.en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:35:57Z (GMT). No. of bitstreams: 1
ntu-105-R03625024-1.pdf: 1693561 bytes, checksum: 44f9f9414f5604ccdddcd8edc67775f3 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
Contents vi
Figure index ix
Table index xi
Chapter 1 Introduction 1
1.1 Importance of isoprene 1
1.2 Significance of moso bamboo 3
1.3 Motivation and objectives 4
Chapter 2 Literature review 5
2.1 The reason why plants emit isoprene 5
2.2 Short and long term factors controlling plant isoprene emission rate 7
2.3 Models for estimating plant isoprene emission rate 9
Chapter 3 Materials and methods 12
3.1 Research site 12
3.2 Sampling of isoprene emission 13
3.3 Screening multiple bamboo species 16
3.4 Difference between canopy locations 18
3.5 Monthly measurements for seasonal variations 20
3.6 Qualification and quantification of VOCs 21
3.7 Data analysis 22
3.7.1 Isoprene emission rate calculation 22
3.7.2 Standardization of isoprene emission using environmental data 22
3.8 Developing model for seasonal variation of isoprene emission rate 25
3.8.1 Effect of the leaf temperature 25
3.8.2 Effect of the light intensity 28
Chapter 4 Results and discussions 30
4.1 Multiple bamboo species screening 30
4.2 Vertical variation of isoprene emission within canopy 33
4.3 Seasonal variation of isoprene emission 39
4.4 Modeling for the temporal variation of isoprene emission rate 44
4.4.1 Effect of the leaf temperature 44
4.4.2 Effect of the light intensity 49
4.4.3 Reproducibility of the model 51
Chapter 5 Conclusion 54
References 57
dc.language.isoen
dc.subject季節變異zh_TW
dc.subject孟宗竹zh_TW
dc.subject冠層變異zh_TW
dc.subject模型開發zh_TW
dc.subject異戊二烯zh_TW
dc.subjectseasonal variationen
dc.subjectIsopreneen
dc.subjectmoso bambooen
dc.subjectcanopy variationen
dc.subjectmodel developmenten
dc.title臺灣溪頭孟宗竹林之異戊二烯放出特性zh_TW
dc.titleCharacteristics of Isoprene Emission in a Moso Bamboo Forest, Xitou, Central Taiwanen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee奧村智憲,梁偉立,鄭智馨
dc.subject.keyword異戊二烯,孟宗竹,冠層變異,模型開發,季節變異,zh_TW
dc.subject.keywordIsoprene,moso bamboo,canopy variation,model development,seasonal variation,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201603083
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf1.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved