請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36875
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾國藩 | |
dc.contributor.author | Hsiao-Yu Peng | en |
dc.contributor.author | 彭筱伃 | zh_TW |
dc.date.accessioned | 2021-06-13T08:20:27Z | - |
dc.date.available | 2005-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-19 | |
dc.identifier.citation | Arancio, O., Kiebler, M., Lee, C. J., Lev-Ram, V., Tsien, R.Y., Kandel, E. R. and Hawkins, R. D. 1996. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87: 1025-1035.
Azzi, G. M., Canady, A. I., Ham, S., Mitchell, J. A. 1999. Kaolin-induced hydrocephalus in the hamster: temporal sequence of changes in intracranial pressure, ventriculomegaly and whole-brain specific gravity. Acta Neuropathol. 98: 245-250. Berman, R. F. and Hannigan, J. H. 2000. Effects of prenatal alcohol exposure on the hippocampus: Spatial behavior, electrophysiology, and neuroanatomy, Hippocampus 10: 94-110. Bliss, T.V., and Collingridge, G. L. 1993. A synaptic model of memory: long term potentiation in the hippocampus. Nature 361: 31-39. Braun KP, de Graaf RA, Vandertop WP, Gooskens RH, Tulleken KA, and Nicolay K. 1998. In vivo 1H MR spectroscopic imaging and diffusion weighted MRI in experimental hydrocephalus. Magn. Reson. Med. 40: 832-839. Bret, D. S., Ferris, C. D. and Synder, S. H. 1992. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C and calcium/calmodulin protein kinase: identification of flavin and calmodulin binding sites. J. Biol. Chem. 267: 976-981. Bredt, D. S. and R. G. Coss. 1982. Nitric oxide, a novel neuronal messenger. Neuron 8: 3-11. Bullock, R., Y. Kuroda, G. M. Teasdale and J. McCulloch. 1992. Prevention of post-traumatic excitotoxic brain damage with NMDA antagonist drugs: a new strategy of the nineties. Acta Neurochir. Suppl (Wien.) 55: 49-55. Chen, J.–R. Wang, Y.-J. and Tseng, G.-F. 2003. The effect of epidural compression on cerebral cortex: a rat model. J. Neurotrauma 20: 767-780. Chen, J.-R. Wang, Y.-J. and Tseng, G.-F. 2004. The effect of decompression and exogenous NGF on cerebral cortex subjected to compression. J. Neurotrauma 21: 1640-1651. Choi, D. W. and S. M. Rothman. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13: 171-182. Choi, D. W., J. Y. Koh and S. Peters. 1988. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8: 185-196. Clark, R. G. and Millhorat, T. H. 1970. Experimental hydrocephalus. 3. Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J. Neurosurg. 32: 400-413. Cohen, H. L., Haller, J. O., and Pollack, A. 1990. Ultrasound of the septum pellucidum. Recognition of evolving fenestrations in the hydrocephalic infant. J. Ultrasound Med. 9: 377-383. Colonnier M: The electron-microscopic analysis of the neuronal organization of the cerebral cortex, in Schmitt FO, Worden FG, Adelman G, et al (eds): The Organization of Cerebral Cortex. Cambridge, Mass: MIT Press. 1981, pp125-152. Cosan, T. E., Guner, A. I., Akcar, N., Uzuner, K., and Tel, E. 2002. Progressive ventricular enlargement in the absence of high ventricular pressure in an experimental neonatal rat model. Child’s Nerv. Syst. 18: 10-14. Cuzzocrea S, Costantino G, Gitto E, Mazzon E, Fulia F, Serraino I, Cordara S, Barberi I, De Sarro A and Caputi AP. 2000. Protective effects of melatonin in ischemic brain injury. J Pineal Res. 29: 217-227. da Silva MC, Michowicz S, Drake JM, Chumas PD and Tuor UI. 1995. Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus-restoration with CSF shunting. J Cereb Blood Flow Metab. 15: 1057-1065. Dandy, W. E. and Backfan, K. D. 1913. An experimental and clinical study of internal hydrocephalus. JAMA 61: 2216-2217. Dawson, V. L., and Dawson, T. M. 1998. Nitric oxide in neurodegeneration. Prog. Brain Res. 118: 215-229. De, S. N. 1950. A study of the change in the brain in experimental internal hydrocephalus. J. Pathol. Bacteriol., 62: 197-208. DeFeo, Myers, Foltz, Everett and Ramshaw. 1979. Histological examination of kaolin-induced hydrocephalus. J. Neurosurg. 50: 70-74. Del Bigio, M. R. and Y. W. Zhang. 1998. Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp. Neurol. 154: 157-169. Del Bigio, M. R., and J. P. Vriend. 1998. Monoamine neurotransmitter and amino acids in the cerebrum and striatum of immature rats with kaolin-induced hydrocephalus. Brain Res. 798: 119-126. Del Bigio, M. R., C. R. Crook and R. Buist. 1997. Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Exp. Neurol. 148: 256-264. Del Bigio, M. R. 1993. Neuropathological changes caused by hydrocephalus. Acta Neuropathol. 85: 573-585. Del Bigio, M. R., J. H. Deck and J. K. MacDonald. 1993. Syrinx extending from conus medullaris to basal ganglia: a clinical, radiological, and pathological correlation. Can. J. Neurol. Sci. 20: 240-246. Del Bigio M. R., and Bruni J. E. 1991. Silicone oil-induced hydrocephalus in the rabbit. Childs Nerv. Syst. 7: 79-84. Del Bigio, M. R., and Bruni, J. E. 1988. Periventricular pathology in hydrocephalic rabbits before and after shunting. Acta Neuropathol. 77: 186-195. Dennis M, Barnes MA, Hetherington R, et al. 2000. Memory in adult survivors of spina bifida. Paper presented at: International Neuropsychological Society, 28th Annual Meeting. Denver CO. Diggs, J., Price, A. C., Burt A. M., Flor, W. J., McKanna J. A., Novak, G. R., and James A. E. Jr. 1986. Early changes in experimental hydrocephalus. Invest. Radiol. 21: 118-121. Ding Y, McAllister JP 2nd, Yao B, Yan N and Canady AI. 2001. Axonal damage associated with enlargement of ventricles during hydrocephalus: a silver impregnation study. Neurol Res. 23: 581-587. Dingledine, R. 1983. N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampus pyramidal cells. J. Physiol. 343: 385-405. Egawan T, Mishima K, Egashira N, Fukuzawa M, Abe K, Yae T, Iwasaki K and Fujiwara M. 2002. Impairment of spatial memory in kaolin-induced hydrocephalic rats is associated with changes in the hippocampal cholinergic and noradrenergic contents. Behav Brain Res. 129: 31-39. Ellison, J. A. and De Vellis, J. 1995. Ameboid microglia express GD3 ganglioside are concentrated in regions of oligodendrogenesis during development of the rat corpus callosum. Glia 14: 123-132. Epstein, BS. 1952. Separation of the blood vessels from the walls of a lateral ventricle in rapidly progressing hydrocephalus. Am J Roentgenol Radium Ther Nucl Med. 67: 929-931. Ferrer, I., N. Guionnet, F. Cruz-Sanchez, and T. Tunon. 1990. Neuronal alternations in patients with dementia: a Golgi study on biopsy samples. Neurosci. Lett. 114: 11-16. Fineman, I., D. A. Hovda, M. Smith, A. Yoshino and D. P. Becker. 1993. Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Res. 624: 94-102. Fostermann, U., and H. Kleinert. 1995. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schimiedebergs Arch. Pharmacol. 352: 351-364. Giulian, D., Backer, T. J., Shih, L. C., Lanchman, L. B. 1986. Interleukin 1 of the central neuvous system is produced by ameboid microglia. J. Exp. Med. 164: 594-604. Goh D and Minns RA. 1995. Intracranial pressure and cerebral arterial flow velocity indices in childhood hydrocephalus: current review. Childs Nerv Syst. 11: 392-396. Goh D, Minns RA, Pye SD and Steers AJ. 1992. Cerebral blood-flow velocity and intermittent intracranial pressure elevation during sleep in hydrocephalic children. Dev Med Child Neurol. 34: 676-689. Goh D, Minns RA, Pye SD and Steers AJ. 1991. Cerebral blood flow velocity changes after ventricular taps and ventriculoperitoneal shunting. Childs Nerv Syst. 7: 452-457. Gopinath G, Bhatia R and Gopinath PG. 1979. Ultrastructural observations in experimental hydrocephalus in the rabbit. J Neurol Sci. 43: 333-334. Guidetti, P. Charles, V. Chen, E. Y. Reddy, P. H. and Kordower, J. H. Whetsell Jr., W.O. R. Schwarcz and Tagle, D.A. 2001. Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production, Exp. Neurol. 169: 340-350. Hale, P.M., McAllister J.P., Katz S.D., Wright L.C., Lovely, T.J., Miller D.W., Wolfson, B.J., Salotto, A.G., Shroff, D.V. 1992. Improvement of cortical morphology in infantile hydrocephalus animal after ventriculoperitoneal shunt placement. Neurosurgery 31: 1085-1096. Hawkins, R. D. 1996. NO honey, I don’t remember. Neuron 16: 465-467. Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB. 1999. Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta. 1410: 215-28. Higashi K, Asahisa H, Ueda N, Kobayashi K Hara K and Noda Y. 1986. Cerebral blood flow and metabolism in experimental hydrocephalus. Neurol Res. 8:169-176. Horner, C. H. 1993. Plasticity of the dendritic spine. Prog. Neurobiol. 41: 281-321. Jones, E. G.. 1986. Neurotransmitters in the cerebral cortex. J. Neurosurg. 65:135-153. Jones, H. C., Rivera KM, Harris NG. 1995. Learning deficits in congenitally hydrocephalic rats and prevention by early shunt treatment. Childs Nerv Syst. 11: 655-660. Jones, H. C., Richards, H. K., Bucknall RM and Pickard JD. 1993. Local cerebral blood flow in rats with congenital hydrocephalus. J Cereb Blood Flow Metab. 13: 531-534. Jones, H. C., Bucknall, R. M. and N. G. Harris. 1991. The cerebral cortex in congenital hydrocephalus in the H-Tx rat: a quantitative light microscopy study. Acta Neuropathol. (Berl) 82: 217-224. Katayama Y., Tsubokawa T, Kinoshita K, Koshinaga M, Katamata T. and Miyazaki S. 1991. Impaired synaptic plasticity and dendritic damage of hippocampal CA1 pyramidal cells in chronic hydrocephalus. In: Matsumoto S, Tamaki N. (eds) Hydrocephalus. Pathogenesis and treatment. Springer Tokyo, p58-67. Klinge P. M., Samii, A., Muhlendyck, A., Visnyei, K., Meyer, G. J., Walter, G. F., Silverberg, G. D., Brinker, T. 2003. Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus. Stroke 34: 193-199. Klinge P. M., Muhlendyck, A., Lee, S., Ludemann, W., Groos, S., Samii, A., Brinker, T. 2002. Temporal and regional profile of neuronal and glial cellular injury after induction of kaolin hydrocephalus. Acta Neurochir Suppl. 81: 275-277. Koch, C. 1999. Biophysics of computation: Information Processing in Single Neurons. Oxford University Press: New York, New York. Koch, C., T. Poggio and V. Torre. 1982. Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos. Trans. R. Soc. Lond B Biol. Sci. 298: 227-263. Kondziella, D., Lüdemann, W., Brinker, T., Sletvold, O., and Sonnewald, U. 2002. Alternations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus. Brain Res. 927: 35-41. Kraig RP, Pulsinelli WA, Plum F. 1985. Hydrogen ion buffering during complete brain ischemia. Brain Res. 342: 281-290. Kriebel RM, McAllister JP 2nd. 2000. Pathology of the hippocampus in experimental feline infantile hydrocephalus. Neurol. Res. 22: 29-36. Kriebel RM, Shah AB, McAllister JP 2nd. 1993. The microstructure of cortical neuropil before and after decompression in experimental infantile hydrocephalus. Exp. Neurol. 119: 89-98. Kuge, T. Asayama, T. Kakuta, S. Murakami, K. Ishikawa, Kuroda, Y. Imai, M. T. Seki, K. Omoto, M. and Kishi, K. 1993. Effect of ethanol on the development and maturation of synapses in the rat hippocampus: A quantitative electron-microscope study. Environ. Res. 62: 99-105. Lacey, D. J. 1986. Cortical dendritic spine loss in rat pups whose mothers were prenatally injected with phenylacetate (‘maternal PKU’ model). Brain Res. 27: 283-285. Leech R. W. 1991. Pathologic considerations. In Hydrocephalus: Current Clinical Concepts (R.W. Leech, and R. A. Brumback, Eds), pp. 39-44. Mosby, St. Louis. Liptons, S. A. and P. Nicotera. 1998. Calcium, free radicals and excitotoxins in neuronal apoptosis. Cell Calcium 23: 165-171. Liu, P.-H. Wang, Y.-J. and Tseng, G.-F. 2003. Close axonal injury of rubrospinal neurons induced transient perineuronal astrocytic and microglial reaction that coincided with their massive degeneration. Exp. Neurol. 179: 111-126. Lowndes, M., and Stewart, M.G. 1994. Dendritic spine density in the lobus parolfactorius of the domestic chick is increased 24 h after one-trial passive avoidance training. Brain Res. 654: 129-136. Mainen Z. F. 1999. Functional plasticity at dendritic synapses. In: Dendrites (Stuart G, Spruston N, Häusser M, eds). Oxford: Oxford University Press, pp 310-338. Mangano F. T., McAllister 2nd J. P., Jones H. C., Johnson M. J., Kriebel R. M. 1998. The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol. Res. 20: 697–704. McComb, J. G. 1997. The cerebrospinal fluid, hydrocephalus, and cerebral edema. In: Davis RL, Roberstson DM, editors. Textbook of neuropathology. Baltimore: Williams and Wilkins. p225-251. Miyan JA, Khan MI, Kawarada Y, Sugiyama T and Bannister CM. 1998. Cell death in the brain of the HTx rat. Eur J Pediatr Surg. 8: 43-48. Miyaoka, M., M. Ito, M. Wada, K. Sato and S. Ishill. 1988. Measurement of local cerebral glucose utilization before and after V-P shunt in congenital hydrocephalus in rats. Metab Brain Dis. 3: 125-132. Miyazawa T, Sato K, Ikeda Y, Nakamura N and Matsumoto K. 1997. A rat model of spontaneously arrested hydrocephalus. A behavioral study. Childs Nerv. Syst. 13: 189-193. Miyazawa T and Sato K. 1991. Learning disability and impairement of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus. Childs Nerv. Syst. 7: 121-128 Mori, K., J. Shimada, M. Kurisaka, K. Sato and K. Watanabe. 1995. Classification fo hydrocephalus and outcome of treatment. Brain Dev. 17: 338-348. Murphy, E. H. and Magness, R. 1984. Development of the rabbit visual cortex: a quantitative Golgi analysis. Exp. Brain Res. 53: 304-314. Naidich TP, McLone DG, Hahn YS and Hanaway J. 1982. Atrial diverticula in severe hydrocephalus. AJNR Am J Neuroradio. 3: 257-266. Nakado J, Oka N, Nahahori T, Endo S and Takaku A. 1992. Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir (Wien). 114: 43-50. Nedergard, M., T. Takano and A. J. Hansen. 2002. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3: 748-755. Nilsson, P., H. Laursen, L. Hillered and A. J. Hansen. 1996. Calcium movements in traumatic brain injury: the role of glutamate receptor-operated ion channel. J. Cereb. Blood Flow Metab. 16: 262-270. Norenberg, M. D. and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthease in astrocyte of rat brain. Brain Res. 161: 303-310. O’Dell, T. J., Hawkins, R. D., Kandel, E. R., Arancio, O. 1991. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc .Natl. Acad. Sci. USA 88: 11285-11289. Oka N, Nakada J, Endo S and Takaku A. 1985. Angioarchitecture in experimental hydrocephalus. Pediatr Neurosci. 12: 294-299. Okuyama T, Hashi K, Sasaki S, Sudo K and Kurokawa Y. 1987. Changes in cerebral microvasculature in congenital hydrocephalus of the inbred rat LEW/Jms: light and electron microscopic examination. Surg Neurol. 27: 338-342. Paine, R. S. 1967. Hydrocephalus. Pediatr. Clin. North Am. 14: 779-796. Paul, L. A. and Scheibel, A. B. 1986. Structural substrates of epilepsy. Adv. Neurol. 44: 775-786. Pollock, J. S., U. Forstermann, W. R. Tracey and M. Nakane. 1995. Nitric oxide synthase isozymes antibodies. Histochem. J. 27: 738-744. Pokorny, J. and Trojan, S. 1986. The development of hippocampus structure and how it is influenced by hypoxia. Acta Univ. Carol. (Praha) 113: 1-79. Radi, R., Beckman, J. S., Bush, K. M., Freeman, B. A., 1991. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288: 481-487. Rall, W. 1959. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1: 491-527. Ransom, B., T. Behar and M. Nedergaard. 2003. New roles for astrocytes (stars at last). Trends Neurosci. 26: 520-522. Río, C., Pérez-Cérda, F., Matute, C. and Nieto-Sampedro, M. 1995. Preparation of a monoclonal antibody to a glycidic epitope of the epidermal growth factor receptor that recognized inhibits of astrocyte proliferation and reactive microglia. J. Neu. Res. 40: 776-786. Russell, D. S. 1949. Observation on the pathology of hydrocephalus. Med. Res. Counc. Spec. Rep. Ser. 265: 1-138. Schmidt, C., C. Ohlemeyer, C. Labrakakis, T. Walter, H. Kettenmann, and J. Schnitzer. 1997. Analysis of motile oligodendrocyte precursor cells in vitro and in brain slice. Glia 20: 284-298. Schuman, E.M., Madison, D.V. 1991. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254: 1503-1506. Schurr, P.H., R. L. Mclaurin and F. D. Ingraham. 1953. Experimental studies on the circulation of the cerebrospinal fluid and methods of producing communicating hydrocephalus in the dog. J. Neurosurg. 10: 515-525. Scott MA, Fletcher JM, Brookshire BL, Davidson KC, Landry SH, Bohan TC, Kramer LA, Brandt ME and Francis DJ. 1998. Memory functions in children with early hydrocephalus. Neuropsychology 12: 578-589. Segal, M., E. Korkotian and D. D. Murphy. 2000. Dendritic spine formation and pruning: common cellular mechanism? Trends Neurosci. 23: 198. Shepherd, G. M., R. K. Brayton, J. P. Miller, I. Segev, J. Rinzel and W. Rall. 1985. Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc. Natl. Acad. Sci. USA. 82: 2192-2195. Shih WJ and Tasdemiroglu E. 1995. Reversible hypoperfusion of the cerebral cortex in normal-pressure hydrocephalus on technetium-99m-HMPAO brain SPECT images after shunt operation. J Nucl Med. 36: 470-473. Shinoda M, and Olson L. 1997. Immunological aspects of kaolin-induced hydrocephalus. Int. J. Neurosci. 92: 9-28. Shirane R, Sato S, Sato K, Kameyama M, Ogawa A, Yoshimoto T, Hatazawa J, Ito M. 1992. Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst. 8: 118-123. Spacek, J. and Hartmann , M. 1983. Three-dimensional analysis of dendritic spines. I. Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices. Anat. Embryol. 167: 289-310. Tsai SY and McNulty JA. 1997. Microglia in the pineal gland of the neonatal rat: characterization and effects on pinealocyte neurite length and serotonin content. Glia 20: 243-53. Tseng, G.-F. and M.-E Hu. 1996. Axotomy induces retraction of the dendritic arbor of adult rat rubrospinal neurons. Acta Anat. 155: 184-193. Tseng, G.-F., Wang, Y.-J., and Lai, Q.-C. 1996a. Perineuronal microglial reactivity following proximal and distal axotomy of rat rubrospinal neurons. Brain Res. 715: 32-44. Tseng, G.-F., Wang, Y.-J., and Lai, Q.-C. 1996b. Rubral astrocytic reactions to proximal and distal axotomy of rubrospinal neurons in the rat. Brain Res. 725: 115-128. Ulfig N, Bohl J, Neudorfer F, Rezaie P. 2004. Brain macrophages and microglia in human fetal hydrocephalus. Brain Dev. 26: 307-315. Vibulsreth S, Hefti F, Ginsberg MD, Dietrich WD, Busto R. 1987. Astrocyte protect cultured neurons from degeneration induced by anoxia. Brain Res. 422: 303-311. Walz W, Hertz L. 1983. Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog. Neurobiol. 20: 122-183. Wang, Y.-J., Liu, C.-L., and Tseng, G.-F. 1996. Compartmentation of calbindin and parvalbumin in different parts of rat rubrospinal neurons. Neuroscience 74: 427-434. Weller RO and Wisniewski H. 1969. Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain. 92: 819-828. Wisniewski, H., R. O. Weller and R. D. Terry. 1969. Experimental hydrocephalus produced by the subarachnoid infusion of silicone oil. J. Neurosurg. 31: 10-14. Wozniak M, McLone DG and Raimondi AJ. 1975. Micro- and macrovascular changes as the direct cause of parenchymal destruction in congenital murine hydrocephalus. J Neurosurg. 43: 535-545. Wright L. C., McAllister J. P., Katz S. D., and Miller D. W. 1991. Cytological and cytoarchitectural changes in the feline cerebral cortex during experimental infantile hydrocephalus. Pediatr. Neurosurg. 16: 139-155. Yakovlev PI. 1947. Paraplegias of hydrocephalus. A clinical note and interpretation. Am. J. Ment. Defic. 51: 561-576. 盧治中, 2005. 水腦症對大鼠感覺運動皮質的影響。碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36875 | - |
dc.description.abstract | 水腦被發現會影響個體的學習能力,而目前普遍相信大腦中的海馬迴與學習及記憶有著密切的關係,因此為了探討水腦降低動物學習能力的形態學基礎,我們以高嶺土(kaolin)誘發大鼠阻塞型水腦症,探討手術後一週(急性期)和四週(慢性期)海馬迴形態學上的變化。結果顯示:大鼠顱內壓在手術後一週明顯上升,而且維持至慢性期,而腦室則隨存活週數逐漸擴大。分析個別動物同時測得的顱內壓與腦室面積估算,發現隨著腦壓增加,腦室也隨著擴張。另外,腦室擴張愈大,大腦皮質層變得愈薄,其中白質之變化尤為明顯。動物的體重增加速率也因水腦的發生而比正常組慢。巨觀下,整個海馬迴承受特別明顯的橫向擠壓。免疫組織染色顯示,不論是急性期或慢性期,海馬迴中CA1、CA3區的小膠細胞與星形神經膠細胞的數目皆增加,而表現豐富一氧化氮合成酶的細胞數目在CA區則無明顯變化。當我們以細胞內染料注射法探討海馬迴CA3區錐狀神經元整體樹突叢時發現樹突總長度在急性期時即明顯變短,這些變化集中在頂樹突;細胞所有樹突表面樹突棘的密度在急性期與慢性期都明顯降低。
綜上所述,我們目前的結果顯示阻塞型水腦壓迫除導致海馬迴發生普遍性的神經膠細胞反應外還造成其主要神經元—錐狀神經細胞的樹突叢變短且樹突棘密度降低。這些型態上的變化意味著水腦影響了海馬迴接受訊息的功能,由於錐狀神經細胞元也是海馬迴的傳出神經元,因此這些變化也改變了海馬迴的功能,這些型態學上的變化可能是水腦降低動物學習能力的基礎。 | zh_TW |
dc.description.abstract | Hydrocephalus is known to affect learning, which is generally believed to be an important function of the hippocampus. To investigate the anatomic substrate of this hydrocephalus-induced deficiency, we took advantage of a kaolin-induced rat obstructive hydrocephalus model and studied its effect on hippocampus. Hippocampus was studied 1 (acute) and 4 week (chronic) following kaolin injection into cisterna magna. The intracranial pressure of animals increased significantly in acute, and persisted to chronic cases. Intracranial pressure increased as the ventricules gained in sizes. Thinning of white matter was more dramatic than gray matter as the ventriculomegaly advanced. Hippocampus appeared to be compressed more obviously in the horizontal direction based on the alteration of its shape. In both CA3 and CA1 areas, microglial and astrocytic reactions was inducted in both acute and chronic animals. The density of NOS-immunoreactive neurons in hippocampus remained low following hydrocephalus. As to the dendritic arbors of the CA3 pyramidal neurons, intracellular dye injection revealed that the total dendritic length, which was caused by a specific decrease of apical dendrites, of acute animals was significantly decreased. The density of dendritic spines on all the dendrites of this neuron both acute and chronic animals was significantly decreased. In conclusion, in addition to reactive glial responses, obstructive hydrocephalus caused the remodeling of the dendritic arbors of CA3 pyramidal neurons. The alteration of receiving structures implies changes of hippocampal input as well as output. The phenomena we observed are likely to underlie the impairment of learning reported of hydrocephalic animals. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:20:27Z (GMT). No. of bitstreams: 1 ntu-94-R91446007-1.pdf: 770574 bytes, checksum: cde67a82ada966bb5803725f7da46568 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要.........................1
英文摘要.........................2 前言...........................3 材料與方法.......................10 結果..........................16 討論..........................19 參考文獻........................25 圖表與說明.......................37 | |
dc.language.iso | zh-TW | |
dc.title | 水腦對海馬迴之影響:以高嶺土誘發大鼠之模式 | zh_TW |
dc.title | The effect of hydrocephalus on hippocampus:
studies on a kaolin-induced rat model | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王曰然,陳建榮 | |
dc.subject.keyword | 水腦,海馬迴, | zh_TW |
dc.subject.keyword | hydrocephalus,hippocampus, | en |
dc.relation.page | 55 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 752.51 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。