請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36872完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳朝峰 | |
| dc.contributor.author | Yih-Sharng Chen | en |
| dc.contributor.author | 陳益祥 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:20:18Z | - |
| dc.date.available | 2006-08-02 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-19 | |
| dc.identifier.citation | 參考文獻
Reference: Arnaud C, Joyeux M, Garrel C, Godin-Ribuot D, Demenge P, Ribuot C. Free-radical production triggered by hyperthermia contributes to heat stress- induced cardio protection in isolated rat hearts. Br J Pharmacol 2002;135:1776-1782 Auchampach JA, Grover CJ, Gross GJ. Blockade of ischemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 1992;26:1054–1062. Auchampach JA, Rizvi A, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R. Selective activation of A3 adenosine receptors with N6 adenosine —5-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ Res 1997;80:800–809. Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 1997;29:207–216. Baxter G, Yellon D. Temporal charterization of the “second window of protection”: prolonged anti-infarct effect after adenosine A1 receptor activation. Circulation (abstract) 1994;90(suppl):I-475. Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning as adistance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 1997;96:1641-1646. Brady P, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 1998;31:950–906. Brown JM, Gross MA, Terada LS, Whitman GJR, Banerjee A, White CW, Harken AH, Repine JE. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci USA 1989;86:2516–2520. Brown JM, Anderson BO, Repine JE, Shanley PF, White CW, Grosso MA, Banerjee A, Bensard DD, Harken AH. Neutrophils contribute to TNF induced myocardial tolerance to ischemia. J Mol Cell Cardiol 1992;24:485–495. Burckhartt B, Yang XM, Tsuchida A, Mullane KM, Downey JM, Cohen MV. Acadesine extends the window of protection afforded by ischemic preconditioning in conscious rabbits. Cardiovasc Res 1995;29:653–657. Carroll R, Yellon DM. Myocardial adaptation to ischemia – the preconditioning phenomenon. Int J Cardiol 1999;68(suppl):S93-S101. Cave AC. Preconditioning induced protection against post-ischaemic contractile dysfunction: characteristics and mechanisms. J Mol Cell Cardiol 1995;27:969–979. Cave AC, Hearse DJ. Ischemic precodntioning and contractile function: studies with normathermic and hypothermic global ischaemia. J Mol Cell Cardiol 1992;24:1113-1123. Chen W, Glasgow W, Murphy E, Steenbergen C. Lipoxygenase metabolism of arachidonic acid in ischemic preconditioning and PKC—induced protection in heart. Am J Physiol Heart Circ Physiol 1999;276:H2094–2101. Chen CF, Tsai SY, Ma MC, Wu MS. Hypoxic preconditioning enhances renal superoxide dismutase levels in rats. J Physiol 2003;552:561-569. Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM. ”De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion.” J Am Soc Nephrol 2001;2:973-982. Cornelusesen RN, Garnier AV, van der Vusse GJ, Reneman RS, Snoeckx LHEH. Biphasic effect of heat stress pretreatment on ischemic tolerance of isolated rat hearts. J Mol Cell Cardiol. 1998;30:365-372. Currie RW, Karmazyn M, Kloc M, Mailer K. Heat shock response is associated with enhanced postischemic ventricular recovery. Circ Res 1988;63:543–549. Das DK, Maulik N, Sato M, Ray PS. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 1999;196:59–67. Dickson EW, Lorbar M, Porcaro WA, Fenton RA, Reinhardt CP, Gysembergh A, Pzyklenk K. Rabbit heart can be ‘preconditioned’ via transfer of coronary effluent. Am J Physiol 1999;277:H2451-H2457. Downey JM, Cohen MV. Mitochondrial KATP channel opening during index ischemia and following myocardial reperfusion in ischemic rat hearts. J Mol Cell Cardiol 2001;33:651–653. Eisen A, Fisman EZ, Rubenfire M, Freimark D, McKechnie R, Tenenbaum A, Motro M, Adler Y. Ischemic preconditioning: nearly two decades of reaearch. Atherosclerosis 2004;172:201-210. Fernandez L, Carrasco-Chaumel E, Serafin A, Xaus C, Grande L, Rimola A, Rosello-Catafau J, Peralta C. Is ischemic preonditioing a useful strategy in steatotic liver transplantation? Am J Transplant 2004;4:888-899. Flack JE 3rd, Kimura Y, Engelman RM, Rousou JA, Iyengar J, Jones R, Das DK. Preconditioning the heart by repeated stunning improves myocardial salvage. Circulation 1991;84(5 Suppl):III369-III374. Gho BCG, Shoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD. Myocardial protection by brief ischemia in noncardiac tissue. Circulation 1996;94:2193-2200. Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 1995;77:611–621. Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation 1992;86:1310–1316. Günaydin B, Cakici I, Soncul H, Kalayciğlu, Cevik C, Sancak B, Kanzik, Karadenizli Y. Dose remote organ ischemia trigger cardiac precodntioning during coronary artery surgery? Pharmacol Res 2000;31:493-496. Gysembergh A, Margonari H, Loufoua J, Ovize A, Andre-Fouet X, Minaire Y, Ovize M. Stretch-induced preconditioning shares a common mechanism with ischemic preconditioning in rabbit heart. Am J Physiol 1998;274: H955–H964 Hagar JM, Hale SL, Kloner RA., Joyeux Effect of preconditioning ischemia on reperfusion arrhythmias after coronary artery occlusion and reperfusion in the rat. Circ Res 1991;68:61–68. Hale SL, Kloner RA. Ischemic preconditioning and myocardial hypothermia in rabbit with prolonged coronary artery occlusion. Am J Physiol 1999;276:H2029-H2034. Hutter MM, Siever RE, Barbosa V, Wolfe CL. Heat-shock protein induction in rat hearts. A direct correlation between the amount pf heat-shock protein induced and the degree of myocardial protection. Circulation 1994;89:366-360. Ikonomidis JS, Shirai T, Weisel RD, Derylo B, Rao V, Whiteside CI, Mickle DAG, Li RK. Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C. Am J Physiol 1997;272:H1220–1230. Jennings RB, Reimer KA, Steenbergen C. Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia. J Mol Cell Cardiol 1991;23:1383–1395. Kaszala K, Vegh A, Papp JG, Parratt JR. Time course of the protection against ischemia and reperfusion-induced ventricular arrhythmias resulting from brief periods of cardiac pacing. J Mol Cell Cardiol 1996;28:2085–2095. Kato H, Liu Y, Kogure K, Kato K. Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Res. 1994;634(2):235-244. Kevin LG, Camara AKS, Reiss ML, Novalija E, Stowe DF. Ischemic preconditioning alters real-time measure of O2 radicals in intact heart with ischemia and reperfusion.Am J Physiol 2003;284:H566-H574. Kharbanda RK, Mortensen UM, Whit PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, McAllister R. Transient limb ischemia induces remote preconditioning in vivo. Circulation 202;106: 2881–2883. Kollocassides KG, Seymor AM, Galinanes M, Hearse DJ. Paradoxical effect of ischemic preconditioning on ischemic contracture? NMR studies of energy metabolism and intracellular pH in the rat heart. J Mol Cell Cardiol 1996;28:1045–1057. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circulation 1993;72:1293-1299. Kuzmin AI, Gourine AV, Molosh AI, Lakomkin VL, Vassort G. Effects of preconditioning on myocardial interstitial levels of ATP and its catabolites during regional ischemia and reperfusion in the rat. Basic Res Cardiol 2000;95:127–136. Lasley RD, Konyn PJ, Hegge JO, Mentzer Jr., RM. Effects of ischemic and adenosine preconditioning on interstitial fluid adenosine and myocardial infarct size. Am J Physiol Heart Circ Physiol 1995;38:H1460–H1466. Li Y, Kloner RA. Cardioprotective effects of ischemic preconditioning are not mediated by prostanoids. Cardiovasc Res 1992;26:226–231. Li Y, Kloner RA. The cardioprotective effects of ischemic “preconditioning” are not mediated by adenosine receptors in rat heart. Circulation 1993;87:1642-1648. Liauw SK, Rubin BB, Lindsay TF, Romschin AD, Walker PM. Sequential ischemia/reperfusion results in contralateral skeletal muscle salvage. Am J Physiol 1996;270:H1407-H1413. Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ. Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol 2002;283:H29-H37. Liu GS, Thomton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 1991;84:350-356. Liu GS, Richards SC, Olsson RA, Mullane K, Walsh RS, Downey JM. Evidence that adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res 1994;28:1057–1061. McClananhan TB, Nao BS, Wolke LJ, Martin BJ, Metz TE, Gallagher KP. Brief renal occlusion and repferusion reduces myocardial infarct size in rabbits. FASEB 1993;J7:A118(abstract). Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993;88:1264-1272. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995;95:1446–5146. Matsubara T, Minatoguchi S, Matsuo H, Hayakawa K, Segawa T, Matsuno Y, Watanabe S, Arai M, Uno Y, Kawasaki M, Noda T, Takemura G, Nishigaki K, Fujiwara H. Three minute, but not one minute, ischemia and nicocrandil have a preconditioning effect in patients with coronary artery disease. J Am Coll Cardiol 2000;35:345–51. Maulik N, Engelman RM, Wei Z, Liu X, Rousou JA, Flack JE, Deaton DW, Das DK. Drug-induced heat-shock preconditioning improves postischemic ventricular recovery after cardiopulmonary bypass. Circulation 1995;92:II381-II388. Mei DA, Nithipatikom K, Lasley RD, Gross GJ. Myocardial preconditioning produced by ischemia, hypoxia, and a KATP channel opener: effects on interstitial adenosine in dogs. J Mol Cell Cardiol 1998;30:1225–1236. Meldrum DR, Dinarello CA, Shames BD, Cleveland JC Jr, Cain BS, Banerjee A, Meng X, Harken AH. Ischemic preconditioning decreases postischemic myocardial tumor necrosis factor-α production. Potential ultimate effector mechanism of preconditioning. Circulation 1998;98:I214–219. Miyamae M, Fujiwara H, Kida M, et al. Preconditioning improves energy metabolism during reperfusion but does not attenuate myocardial stunning in porcine hearts. Circulation 1993;88:223–34. Moolman JA, Genade S, Tromp E, Lochner A. No evidence for mediation of ischemic preconditioning by alpha1-adrenergic signal transduction pathway or protein kinase C in isolated rat heart. Cardiovasc Drugs Ther 1996;10:125–136. Morris SD, Cumming DV, Latchman DS, Yellon DM. Specific induction of the 70-kD heat stress proteins by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardiomyocytes. A new pharmacological route to stress protein expression? J Clin Invest 1996;97(3):706–712. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-1136. Murry CE, Richard VJ, Jennings RB, Reimer KA. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol 1991;260:H796-804. Nakano M, Mann DL, Knowlton AA. Blocking the endogenous increase in HSP 72 increases susceptibility to hypoxia and reoxygenation in isolated adult feline cardiocytes. Circulation 1997;95(6):1523–1531. Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 2000;32:11159–11167. Nakano A, Heusch G, Cogen MV, Downey JM. Preconditioning one myocardial region does not necessarily precondition the whole rabbit heart. Bas i c Res Cardiol 2002;97:35-40. Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H. Gαi and Gαo are target proteins of reactive oxygen species. Nature 2000;408:492–425. Ovize M, Kloner RA, Hale SL, Przyklenk K. Coronary cyclic flow variations “precondition” ischemic myocardium. Circulation 1992;85:779-789. Ovize M, Kloner RA, Przyklenk K. Stretch preconditions canine myocardium. Am J Physiol 1994;266: H137–H146. Ovize M, Aupetit JF, Rioufol G, Loufoua J, Andre-Fouet X, Minaire Y, Faucon G. Preconditioning reduces infarct size but accelerates time to ventricular fibrillation in ischemic pig heart. Am J Physiol 1995;269:H72–79. Oxman Y, Arad M, Klein R, Avazov N, Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol 1997;273:H1707-H1712. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 2000;87:460–466. Parsa C, Matsumoto A, Kim J, Riel RU, Pascal LS, Walton GB, Thompson RB, Petrofski JA, Annex BH, Stamler JS, Koch WJ. A novel protective effect of erythropoietin in the infracted heart. J Clin Invest 2003;112:999-1007. Pell TJ, Baxter GF, Yellon DM, Drew GM. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol 1998;275:H1542-1547. Peralta C, Hotter G, Closa D, Gelpi E, Bulbena O, Rosello-Catafau. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: role of nitric oxide and adenosine. Hepatology 1997;25:934-937. Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. Ischemic preconditioning induces selective translocation of PKC isoforms ε and η in the heart of conscious rabbits without subcellular redistribution of total PKC activity. Circ Res 1997;81:404–414. Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, Takano H, Balafanova Z, Bolli R. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinase during ischemic preconditioning in conscious rabbits. Circ Res 1999;85:542–550 Post H, Schulz R, Behrends M, Gres P, Umschlag C, Heusch G. No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine. J Mol Cell Cardiol 2000;32:725–733. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic preconditioning protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993;87: 983–899 Przyklenk K, Darling CE, Dickson EW, Whittaker P. Cardioprotction “outside the box” – the evolving paradigm of remote preconditioning. Basic Res Cardiol 2003;98:149-157. Qian Y-Z, Bernardo NL, Nayeem MA, Chelliah J, Kukreja RC. Induction of 72-kDa heat shock protein does not produce second window of ischemic preconditioning in rat heart. Am J Physiol 1999;276:H224–234. Qiu Y, Maldonado C, Tang XL, Bolli R. Late preconditioning against myocardial stunning in conscious rabbits. Circulation 1995;92:I-717. Rahman M, Kimura S, Nishiyama A, Hitomi H, Zhang G, Abe Y. Angiotensin II stimulates superoxide production via both angiotensin AT1A and AT1B receptors in mouse aorta and heart. Eur J Pharmacol 2004;485(1-3):243-249 Sack S, Mohri M, Arras M, Schwarz ER, Schaper W. Ischemic preconditioning—time course of renewal in the pig. Cardiovasc Res 1993;27:551–555. Sanada S, Kitakaze M, Asanuma H, Harada K, Ogita H, Node K, Takashima S, Sakata Y, Asakura M, Shinozaki Y, Mori H, Kuzuya T, Hori M. Role of mitochondrial and sarcolemmal KATP channels in ischemic preconditioning of the canine heart. Am J Physiol Heart Circ Physiol 2001;280:H256–H263. Sandhu R, Diaz RJ, Mao GD, Wilson GJ. Ischemic preconditioning-difference in protection and susceptibility to blockade with single cycle versus multicycle transient ischemia. Circulation 1997;96:984–995. Schaefer S, Carr LJ, Prussel E, Ramasamy R. Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning. Am J Physiol Heart Circ Physiol 1995;268:H935–H944. Schott RJ, Rohmann S, Braum ER, Schaper W. Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 1990;60:1133-1142. Schulz R, Post H, Vahlhaus C, Heusch G. Ischemic preconditioning in pigs: a graded phenomenon. Its relation to adenosine and bradykinin. Circulation 1998;98:1022–1029. Schultz JE, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 1995;268:H2157–H2161. Schwartz LM, Jennings RB, Reimer KA. Premedication with the opioid analgesic butorphanol raises the threshold for ischemic preconditioning in dogs. Basic Res Cardiol 1997;92:106–114. Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch R. No ischemic preconditioning in heterozygous connexin 43-deficient mice. Am J Physiol 2002;283: H1740–H1742. Scumpia PO, Sarcia PJ, Kelly KM, DeMarco VG, Skimming JW. Hypothermia induced anti-inflammatory cytokines and inhibits nitric oxide and myeloperoxidise-mediated damage in the heart of eadotoxemic rats. Chest 2004;125: 1483-1491. Shiki K, Hearse DJ. Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. J Physiol 1987;253(6 Pt 2):H1470-H1476. Shoemaker RG, Van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 2000;278:H1571-H1576. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 2001;81:1461-1597. Speechly DME, Grover GJ, Yellon DM. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K1 channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. Circ Res 1995;77:1030–1035. Suzuki K, Murtuza B, Sammut IA, Latif N, Jayakumar J, Smolenski RT, Kaneda Y, Sawa Y, Matsuda H, Yacoub MH. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation 2002;106(suppl I):I-270-I276. Takano H, Manchikalapudi S, Tang XL, Qiu Y, Rizvi A, Jadoon AK, Zhang Q, Bolli R. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation 1998;98:441–449. Takano H, Tang XL, Qiu Y, Guo Y, French B, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 1998;83:73–84. Takaoka A, Nakae I, Mitsunami K,Yabe T, Morikawa S, Inubushi T, Kinoshita M. Renal ischemia/reperfusion remotely improves energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effect of “remote preconditioning”. J Am Coll Cardiol 1999;33:556-564. Tang X-L, Rizvi AN, Qiu Y, Takano H, Zhang Q, Guo Y, Bolli R. Evidence that the hydroxyl radical triggers late preconditioning against myocardial stunning in conscious rabbits. Circulation 1997;96:I-255. Tang ZL, Dai W, Li YJ, Deng HW. Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischemia of the small intestine. Naunyn-Schmiedeberg’s Arch Pharmacol 1999;359: 243–247. Thornton J, Striplin S, Liu GS, Swafford A, Stanley AWH, Van Winkle DM, Downey JM. Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am J Physiol 1990;259:H1822–H1825. Thornton JD, Liu GS, Olsson RA, Downey JM. Intravenous pretreatment with A1 selective adenosine analogues protects the heart against infarction. Circulation 1992;85:659–665. Tokube K, Kiyosue T, Arita M. Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction. Am J Physiol Heart Circ Physiol 1996;271:H478–H489. Van winkle DM, Thornton JD, Downey DM, Downey JM. The natural history of preconditioning: cardioprotection depends on duration of transient ischemia and time to subsequent ischemia. Coron Artery Dis 1991;2:613–619. Wang YP, Maeta H, Mizoguchi K, Suzuki T, Yamashita Y, Oe M. Intestinal ischemia preconditions myocardium: role of protein kinase C and mitochondrial KATP channel. Cardiovasc Res 2002;55: 576–582. Wallbridge DR, Schulz R, Braun C, Post H, Heusch G. No attenuation of ischemic preconditioning by the calcium antagonist nisoldipine. J Mol Cell Cardiol 1996;28:1801–1810. Weinbrenner C, Nelles M, Herzog N, Sarvary L, Strasser R. Remote preconditioining by infrarenal occlusion of the aorta protects the heart from infarction: a newly indentified non-neuronal but PKC-dependent pathway. Cardiovasc Res 2002;55:590-601. Whittaker P, Przyklenk K. Reduction of infarct size in vivo with ischemic preconditioning: mathematical evidence for protection via non-ischemic tissue. Basic Res Cardiol 1994;89: 6–15. Wolfrum S, Schneider K, Heidbreder M, Neinstedt J, Dominiak P, Dendorfer A. Remote preconditioning protects the heart by activating myocardial PKC-isoform. Cardiovasc Res 2002;55:583-589. Xi L, Chelliah J, Nayeem MA, Levasseur JE, Hess ML, Kukreja RC. Whole body heat shock fails to protect mouse heart against ischemia/reperfusion injury: role of 72 kDa heat shock protein and antioxidant enzymes. J Mol Cell Cardiol 1998;30:2213-2227. Xia XH, Allen DG. Activity of the Na+/H+ exchanger is critical to reperfusion damage and preconditioning in the isolated rat heart. Cardiovasc Res 2000;48:244–253. Xiao L, Lu R, Hu CP, Deng HW, Li YJ. Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide. Eur J Pharmacol 2001;427: 131–135. Yamashita N, Nishida M, Hoshida S, Kuzuya T, Hori M, Taniguchi N, Kamada T, Tada M. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 1994;94:2193–2199. Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M. Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat. Circulation 1998;98:1414-1421. Yamashita N, Hoshida S, Otsu K, Ashai M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 1999;189:1699–1706. Yang XM, Sato H, Downey JM, Cohen MV. Protection of ischemic preconditioning is dependent upon a critical timing sequence of protein kinase C activation. J Mol Cell Cardiol 1997;29:991–999. Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet 1993;342:276-277. Yellon DM, Baxter GF. A “second window of protection” or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol 1995;27:1023-1034. Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol Heart Circ Physiol 1994;266:H1145–H1152. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36872 | - |
| dc.description.abstract | 缺血性前置處理(IPC)在各種動物實驗研究探討已超過10年,而且除了心臟也在以外器的官發現此現象。器官內之“遠端前置處理”(RPC)的概念也形成,可用來保護心肌。而後,器官內遠端前置處理概念也推展到器官間遠端前置處理。骨骼肌遠端前置處理似乎是一個臨床上可行之心肌保護方法,但是仍有些爭論存在,而且沒有進一步研究來探討其作用機轉。此研究之目的便是在探討骨骼肌遠端前置處理對心肌梗塞之作用與自由基所扮演的角色。
首先,骨骼肌前置處理之設計是對大鼠之單側股動脈行四次十分鐘缺血與十分鐘之再灌流。實驗分成四組:第一組(I):模擬組,第二組(Ⅱ):只做骨骼肌前置處理,第三組(Ⅲ):只有心肌梗塞,第四組(IV): 骨骼肌前置處理,2小時後再行心肌梗塞。以化學冷光分析儀來分析在行骨骼肌前置處理後,自由基的變化,發現在四次缺血/再灌流所產生之自由基最明顯,2小時後最高,4小時後便下降。如果在骨骼肌前置處理期間,給予MPG之注射,則發現自由基增加的現象會消失。此結果可以幫助往後實驗釐清自由基角色上的判讀。 我們首先以一種特殊染色來區別梗塞區域與存活區域,由此來做解剖學上之研究。其梗塞面積(infarct size)在第四組明顯比第三組少(24.7±8.8% in IV vs 51.4±9.1% in III, p < 0.01)。且此現象可以被MPG前處理所抑制(49.2±6.3% in MPG+III vs. 50.1±8.2% in MPG+IV, p > 0.05)。我們測定心肌酵素之釋放來校正之,發現CK-MB與TnI在第四組的釋放量比第三組來的少;同時,其保護效果也可以被MPG所拮抗。用西方漬墨法來探討熱休克蛋白質及抗氧化酵素在心肌中之變化,發現在第Ⅱ、Ⅲ、IV組可以看到熱休克蛋白質及抗氧化酵素(Mn-SOD與GPx)的增加。不過,使用MPG前處理,只看到熱休克蛋白質的下降,而抗氧化酵素則沒有變化。此外,由危險區域與非危險區域蛋白質之分佈,骨骼肌前置處理可能經由神經系統傳遞信息。 大鼠骨骼肌前置處理可以在梗塞模式產生心肌保護作用,其作用會經自由基啟動,而且和熱休克蛋白質與抗氧化酵素有關。 | zh_TW |
| dc.description.abstract | Ischemic preconditioning (IPC) has been widely explored in various experimental models for more than 10 years and it has been also observed in several organs other than the heart. The concept of intraorgan “remote preconditioning” (RPC) has been previously advocated in heart to reduce the infarct size. The concept of intraorgan RPC had beem extended to the interorgan RPC. Skeletal RPC seemed to be a good way for myocardial protection, but some controversial data still exists and no further mechanism was investigated. The aim of this thesis was to investigate the effect of skeletal ischemia/reperfusion on myocardial infarction and the role of free radicals.
First, skeletal RPC was designed in rats by repeated 4-cycle 10-min ischemia-reperfusion of femoral artery. Four experimental groups were included: I, sham group; II, RPC only; III, infarction only; IV, incorporating both RPC and infarction. Chemiluminescence study showed significant elevation of free radical in groups II and IV, and pretreated mercaptopropionyl-glycine (MPG), a free radical scavenger, could abolish the production of free radicals. The result would help to delinate the role of free radicals in RPC. The infarct size was significantly reduced in group IV (24.7±8.8%) compared to group III (51.4±9.1%) (p < 0.001), and this effect was abolished by MPG pretreatment (49.2±6.3% in MPG+III vs. 50.1±8.2% in MPG+IV, p > 0.05). Cardiac enzymes also revealed significant decrease in group IV compared to group III, and the protective effect could be abolished by MPG. Western blotting of heat shock protein (HSP) revealed that consistent elevation of HSP 25 and 70 in group II, III and IV, and the elevation can be abrogated by MPG pretreatment. The expression of the antioxidant enzymes, Mn-superoxidase dismutase and glutathione peroxidase, in the area of risk were consistently elevated in groups II, III, and IV similar to HSP. However, the MPG pretreatment could not decrease the expression of the antioxidant enzymes as HSP. The skeletal RPC in rats can produce a protective effect in an infarction model that may be triggered through free radical pathway, and this protective effect was associated with heat shock protein and antioxidant enzymes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:20:18Z (GMT). No. of bitstreams: 1 ntu-94-D86441001-1.pdf: 2304393 bytes, checksum: 78e1d10233971529b8b79075d2ed5f59 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
中文摘要 I 英文摘要 III 第一章 文獻回顧 1 第一節 前置處理初論 1 第二節 前置處理之分類 5 (1)傳統前置處理 5 1.2-(1)-1啟動者 5 1.2-(1)-2介質者 7 1.2-(1)-3終端作用者 8 (2)第二保護窗 8 1.2-(2)-1&2第二保護窗的介質者與終端作用者 9 第三節 遠端前置處理 10 1.3-1心內之遠端前置處理 10 1.3-2器官間之遠端前置處理 12 1.3-3骨骼肌之遠端前置處理 14 1.3-4不同心臟間之前置處理 16 第二章 動機 17 實驗模式之選定 17 材料及儀器 18 自由基之測定 18 結果 20 第三章 活體大鼠之遠端前置處理 一 實驗模式與方法 30 實驗對象 30 遠端前置處理的模式 31 製造心肌梗塞的方式 31 梗塞面積之測定 31 遠端前置處理之實驗 34 心肌酵素之分析 36 資料的收集與時間點 36 西方墨漬分析法分析心肌內熱休克蛋白、抗氧化酵素之變化 36 統計方法 38 第四章 活體大鼠之遠端前置處理 一 實驗結果與分析 39 自由基量 39 (1)血流動力學 41 (2)形態學結果 45 (3)生化結果 47 (4)心肌內蛋白質之變化結果 51 HSP與抗氧化酵素在不同區域的分佈 61 第五章 活體大鼠之遠端前置處理 一 討論與附加資料 66 (1)遠端前置處理自由基產生 67 (2)梗塞面積之減少與心肌酵素之減少 68 (3)遠端前置處理後HSP與antioxidant 酵素之表現 73 (4)中介者角色 75 第六章 活體大鼠之遠端前置處理臨床可能應用與侷限及結論76 (1)臨床可能應用與侷限76 (2)結論76 參考文獻77 作者已發表之論文97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 梗塞面積 | zh_TW |
| dc.subject | 缺血性前置處理 | zh_TW |
| dc.subject | 遠端前置處理 | zh_TW |
| dc.subject | 自由基 | zh_TW |
| dc.subject | 熱休克蛋白質 | zh_TW |
| dc.subject | remote preconditioning | en |
| dc.subject | infarct size | en |
| dc.subject | shock protein | en |
| dc.subject | free radicals | en |
| dc.subject | Ischemic preconditioning | en |
| dc.title | 骨骼肌遠端缺血前置處理對心肌之保護--自由基之啟動者角色 | zh_TW |
| dc.title | Skeletal Remote Ischemic Preconditioning in Myocardial Protection--free radical as a trigger | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林芳郁,周財福,王水深,曾淵如,張珩 | |
| dc.subject.keyword | 缺血性前置處理,遠端前置處理,自由基,熱休克蛋白質,梗塞面積, | zh_TW |
| dc.subject.keyword | Ischemic preconditioning,remote preconditioning,free radicals,shock protein,infarct size, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
