請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36854完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一平(Yi-Ping Hung) | |
| dc.contributor.author | Yueh-Hsuan Chiang | en |
| dc.contributor.author | 江岳軒 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:19:21Z | - |
| dc.date.available | 2005-07-19 | |
| dc.date.copyright | 2005-07-19 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-19 | |
| dc.identifier.citation | [1] P.N. Belhumeur and D.J. Kriegman, “What is the set of Images of an Object under All Possible Illumination Conditions?”, International Journal of Computer Vision, Vol. 28, no. 3, 1996, pp. 245-260.
[2] A.S. Georghiades, D.J. Kriegman, and P.N. Belhumeur, “Illumination Cones for Recognition under Variable Lighting”, Proc. of Computer Vision and Pattern Recognition, 1998. [3] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J., “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, 2001, pp 643-660. [4] T.Riklin-Raviv and A. Shashua, “The Quotient image: Class based recognition and synthesis under varying illumination”, Proc. Computer Vision and Pattern Recognition, 1999. [5] A. Shashua and T.Riklin-Raviv, “The Quotient image: Class-based Re-Rendering and Recognition with Varying Illumination”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 23, no. 2, 2001. [6] H. Wang, S.Z. Li, and Y. Wang, “Face Recognition under Varying Lighting Conditions Using Self Quotient Image”, IEEE conf. on AFGR, 2004. [7] Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification, second ed. Wiley-Interscience, Canada, 2001. [8] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, July 1997, pp. 711-720. [9] W. Zhao, R. Chellappa, and N. Nandhakumar, “Empirical Performance Analysis of Linear Discriminant Classifiers”, Proc. Computer Vision and Pattern Recognition, June 1998, pp. 164-169. [10] G. Baudat and F. Anouar, “Generalized Discriminant Analysis Using a Kernel Approach”, Neural Computation, vol. 12, 2000, pp. 2385-2404. [11] S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K.-R. Muller, “Fisher Discriminant Analysis with Kernels”, Proc. IEEE Workshop Neural Networks for Signal Processing, 1999, pp. 41-48. [12] L. Shen and Li Bai, “Gabor Wavelets and Kernel Direct Discriminant Analysis for Face Recognition”, International Conference on Pattern Recognition, Cambridge, Aug 2004 [13] Y.-K. Kim, J. Kittler, “Locally Linear Discriminant Analysis for Multimodally Distributed Classes for Face Recognition with a Single Model Image”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 27, no. 3, March 2005. [14] Bailly-Bailliere, S. Bengio, and K. Messer et al. “The BANCA Database and Evaluation Protocol”, International Conference on AVBPA, 2003, pp. 625-623. [15] J. Yang, F. Frangi, J.-Y. Yang, and D. Zhang, “KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 27, no. 2, Feb. 2005, pp 230-244 [16] A. Hyvarinen, J. Karhumen, and E. Oja, Independent Component Analysis. John Wiley & Sons, 2001. [17] T. Okada and S. Tomita, “An Optimal Orthonormal System for Discriminant Analysis”, J. Pattern Recognition, vol. 18, pp. 139-144, 1985. [18] W. Zhao, “Discriminant Component Analysis for Face Recognition”, Proc. International Conference on Pattern Recognition, 2000., vol. 2, pp. 818-821. [19] T. Sim, S. Baker, M. Bsat, “The CMU Pose, Illumination, and Expression (PIE) Database”, IEEE Conf. on Automatic Face and Gesture Recognition, 2002. [20] Kazuhiro Hotta. “Support Vector Machine with Local Summation Kernel for Robust Face Recognition”, Internation Conference on Pattern Recognition, vol. 03, no. 3, pp. 482-485, March 2004. [21] Takahiro OKABE and Yoichi SATO, 'Support Vector Machines for Object Recognition under Varying Illumination Conditions', In Proc. Asian Conference Computer Vision, pp.724-729, Jan. 2004. [22] Qingshan Liu, Rui Huang, Hanqing Lu, and Songde Ma, “Face Recognition Using Kernel Based Fisher Discriminant Analysis”, IEEE International Conference on Automatic Face and Gesture Recognition 2002 [23] K. Jonsson, J. Kittler, Y. Li and G. Matas, “Support Vector Machine for Face Authentication”, In Proceeding of BMVC’99, pp. 543-553, 1999. [24] K. Etemad and R. Chellappa, “Face Recognition using Discriminant Eigenvectors”, In Proc. of ICASSP’96, pp. 2148-2151, 1996. [25] Y.P. Li, J. Kittler and G. Matas, “Effective implementation of Linear Discriminant Analysis for face recognition and verification”, In Proc. of CAIP’99, pp. 243-242. [26] Milan Sonka, Vaclav Hlavac, and Roger Boyle, Image Preprocessing, Analysis, and Machine Vision, second ed., PWS, 1998. [27] H.G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms, Boston, 1997. [28] J. Kittler, Y.P. Li, and J. Matas, “On Matching Scores for LDA-based face verification”, British Machine Vision Conference, 2000. [29] V. Vapnik, Statistical learning theory, John Wiley & Sons, New York, 1998. [30] G. Guo, S. Li, and K. Chan, “Face recognition by support vector machines”, In proc. IEEE FG 2000, pp. 195-201, 2000. [31] B. Heisele, P. Ho, and T. Poggio, “Face recognition with support vector machines: global versus component-based approach”, In Proc. IEEE International Converence on Computer Vision, pp. 688-694, 2001. [32] P. Phillips, “Support vector machines applied to face recognition”, Advaces in Neural Information Processing Systems 11, pp. 803-809, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36854 | - |
| dc.description.abstract | 我們提出了一個新的適用於不同光源環境下的人臉辨識機制。在不同光源環境下的人臉影像是線性不可分的,而不同光源對人臉影像所帶來的變化遠比不同身份的人所帶來的還要大得多。此方法之基本概念是找幾組與光源環境相關的線性轉換向量,使得每一張影像將因為其光源的環境差異而使用不同程度的轉換、進而達成辨識的目標。所提出的機制可以分為幾個步驟,第一步驟是從光源的資料庫中找出一組最具代表性的光源環境類別(Lighting Condition Class),其後我們將每組訓練影像用光源環境彈性分類的機制彈性分類到上面數個類別之中;最後,配合彈性分類的結果,我們將找出與光源環境相關的線性轉換向量來達成人臉辨識的目標。藉著彈性分類與線性轉換向量的特性,我們提出的方法除了可以避免過度配適(overfitting)的問題外、還同時擁有了低的計算量。採用我們提出的方法後,在不同光源環境下的人臉影像將可以良好地被區隔開。我們已經在若干個眾所周知的人臉資料庫測試了所提出的方法,實驗結果指出我們的方法比傳統的人臉辨識機制更好,並且更能表現人臉影像上光源的變化。 | zh_TW |
| dc.description.abstract | We proposed a novel method of face recognition under varying lighting conditions. Face images under different lighting conditions are non-linear separable, image variation due to different lighting conditions is much more significant than that due to different personal identities. The basic idea of our approach is to find a set of lighting condition specific transformations which best separates the face images under varying lighting conditions. The proposed method has several steps, the first one is to find the optimal set of lighting condition classes which best describes the lighting variation, and then we apply a novel soft classification of lighting condition to each training image. With the soft classification result, a set of lighting condition specific linear transformations would be found to complete the recognition task. By the virtue of soft classification and linear transformations, our approach can not only avoid overfittings but also has low computational cost. With our method, face images under varying lighting conditions can be well separated. The proposed method has been tested on several well-known databases, and the experimental results show that the performance of our approach is better than those of conventional methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:19:21Z (GMT). No. of bitstreams: 1 ntu-94-R92922029-1.pdf: 7350045 bytes, checksum: 23d1ed3a2c17e1497dfd13a1ae55736c (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | List of Figures v
List of Tables ix Chapter 1 Introduction 1 1.1 Overview 1 1.2 Conventional Approaches 1 1.2.1 Non-linear Approaches 2 1.2.2 Illumination Cones 3 1.2.3 Quotient Images and Self-Quotient Images 4 1.3 The Proposed Method 5 1.4 Organization 7 Chapter 2 Reviews of Discriminant Analysis 9 2.1 Linear Discriminant Analysis (LDA) 9 2.2 Generalized Discriminant Analysis (GDA) 10 2.3 Locally Linear Discriminant Analysis (LLDA) 12 Chapter 3 Selecting the Representative Lighting Condition Classes (LCCs) 15 3.1 Lighting Condition Class 16 3.1.1 Image Normalization 16 3.1.2 Combining LCCs Reflective to Each Other Horizontally 18 3.2 Lighting Correlation Image 19 3.3 Measures for Lighting Difference between Two Images 20 3.3.1 Euclidean Distance Metric 20 3.3.2 Dissimilarity based on Image Correlation 22 3.3.3 Dissimilarity based on Pixel-wise Correlation 24 3.4 Selecting the Representative Set of K LCCs 25 Chapter 4 Lighting Condition Class-based Locally Linear Discriminant Analysis (LCC+LLDA) 35 4.1 Soft Classification of Lighting Condition 37 4.1.1 Detecting Images Having Opposite Lighting Condition to the Representative LCCs 37 4.1.2 Soft Classification of Lighting Condition 38 4.2 Lighting Condition Class-Based LLDA 39 4.3 Gradient-Based Solution for LCC+LLDA 42 Chapter 5 Experiments 45 5.1 The Experimental Setup of Selecting the Representative Lighting Condition Classes 45 5.1.1 Database 45 5.1.2 Setup 49 5.2 Database 49 5.2.1 The CMU PIE Database 50 5.2.2 The BANCA Database 50 5.3 Experimental Results 52 5.3.1 Experiments based on the Yale Database B 52 5.3.2 Experiments based on the CMU PIE Database 53 5.3.3 Experiments based on the BANCA Database 53 5.3.4 Experiments under Different Number of Representative LCCs 55 5.4 Discussion 56 Chapter 6 Conclusions and Future Work 59 6.1 Conclusions 59 6.2 Future Work 60 Reference 63 | |
| dc.language.iso | en | |
| dc.subject | 彈性分類 | zh_TW |
| dc.subject | 人臉辨識 | zh_TW |
| dc.subject | 光源變化 | zh_TW |
| dc.subject | 局部線性鑑別分析 | zh_TW |
| dc.subject | lighting variation | en |
| dc.subject | face recognition | en |
| dc.subject | locally linear discriminant analysis | en |
| dc.subject | soft classification | en |
| dc.title | 使用以光源分類為基礎的局部線性鑑別分析進行人臉辨識 | zh_TW |
| dc.title | Lighting Condition Class-Based Locally Linear Discriminant Analysis for Face Recognition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳祝嵩,王新民,石勝文,陳文雄 | |
| dc.subject.keyword | 人臉辨識,光源變化,彈性分類,局部線性鑑別分析, | zh_TW |
| dc.subject.keyword | face recognition,lighting variation,soft classification,locally linear discriminant analysis, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 7.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
