請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36823
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖漢文(Hon-Man Liu) | |
dc.contributor.author | Yuan-Heng Mo | en |
dc.contributor.author | 莫元亨 | zh_TW |
dc.date.accessioned | 2021-06-13T08:17:46Z | - |
dc.date.available | 2010-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-19 | |
dc.identifier.citation | 葉炳強、鄭建興。台灣腦血管疾病的現況。http://med.mc.ntu.edu.tw/~neuro/4_educate_02.htm
An H, Lin W, Celik A, Lee YZ. Quantitative measurements of cerebral metabolic rate of oxygen utilization using MRI: a volunteer study. NMR in Biomedicine. 2001; 14(7-8):441-447. An H, Lin W. Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: effects of magnetic field variation. Magnetic Resonance in Medicine. 2002; 47(5):958-966. An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 2000; 20(8):1225-1236. Angstwurm K, Reuss S, Freyer D, Arnold G, Dirnagl U, Schumann RR, and Weber JR. Induced hypothermia in ex perimental pneumococcal meningitis. J Cereb Blood Flow Metab 2000; 20: 834-838. Astrup J, Siesjo BK, and Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981; 12: 723-725. Bacher A, Kwon JY, Zornow MH. Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits. Anesthesiology. 1998; 88(2):403-409. Buck A, Schirlo C, Jasinksy V, Weber B, Burger C, von Schulthess GK, Koller EA, Pavlicek V. Changes of cerebral blood flow during short-term exposure to normobaric hypoxia. J Cereb Blood Flow Metab 1998; 18(8):906-910. Busto R, Dietrich WD, Globus MYT, Valdes I, Scheinberg P, and Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7: 729-738. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, and Ginsberg MD. Effect of mild hypothermia on ischemiainduced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989; 20: 904-910. Buxton RB, Lawrence RF, Pottumarthi PV. Principles of Diffusion and Perfusion MRI. In: Edelman RR, Zlatkin MB, Hesselink JR, eds. Clinical Magnetic Resonance Imaging. Second ed.WB Saunders Company; 1996:233-270. Canevari L, Console A, Tendi EA, Clark JB, and Bates TE. Effect of postischaemic hypothermia on the mitochondrial damage induced by ischaemia and reperfusion in the gerbil. Brain Res 1999; 817: 241-245. Chalela JA, Kang DW, Luby M, Ezzeddine M, Latour LL, Todd JW, Dunn B, Warach S. Early magnetic resonance imaging findings in patients receiving tissue plasminogen activator predict outcome: Insights into the pathophysiology of acute stroke in the thrombolysis era. Ann Neurol 2004; 55:105-112. Chatzipanteli K, Wada K, Busto R, and Dietrich WD. Effects of moderate hypothermia on constitutive and inducible nitric oxide synthase activities after traumatic brain injury in the rat. J Neurochem 1999; 72: 2047-2052. Clifton G. Hypothermia and severe brain injury. J Neurosurg 2000; 93: 718-719. Connolly E, Worthley LIG. Induced and accidental hypothermia. Critical Care and Resuscitation. 2000; 2:22-29. Croughwell N, Smith LR, Quill T, Newman M, Greeley W, Kern F, Lu J, and Reves JG. The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1992; 103: 549-554. de Leon MJ, George AE, Ferris SH, Christman DR, Fowler JS, Gentes CI, Brodie J, Reisberg B, Wolf AP. Positron emission tomography and computed tomography assessments of the aging human brain. J Comput Assist Tomogr 1984; 8(1):88-94. Dempsey RJ, Combs DJ, Maley ME, Cowen DE, Roy MW, Donaldson DL. Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery. 1987; 21: 177-181. Derdeyn CP, Videen TO, Grubb RL Jr, Powers WJ. Comparison of PET oxygen extraction fraction methods for the prediction of stroke risk. J Nucl Med 2001; 42(8):1195-1197. Dietrich WD, Alonso O, and Busto R. Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke. 1993; 24: 111-116. Fisher M, Garcia JH. Evolving stroke and the ischemic penumbra. Neurology. 1996; 47:884-888. Grubb RL Jr, Derdeyn CP, Fritsch SM, et al. The importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998;280: 1055-1060. Guadagno JV, Calautti C, Baron JC. Progress in imaging stroke: emerging clinical applications. Br Med Bull 2003; 65:145-157. Heiss WD, Huber M, Fink GR, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 1992; 12:193-203. Henderson RD, Phan TG, Piepgras DG, and Wijdicks EF. Mechanisms of intracerebral hemorrhage after carotid endarterectomy. J Neurosurg 2001; 95:964-969. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994; 36:557-565. Hsu CY. Recent Advances in MRI Technology in the Diagnosis and Treatment of Ischemic Stroke. The Eleventh Health Conference. 2002:1-4. Huh PW, Belayev L, Zhao W, Koch S, Busto R, and Ginsberg MD. Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia. J Neurosurg 2000; 92: 91-99. Iwama T, Hashimoto N, Todaka T, Sasako Y, Inamori S, and Kuro M. Resection of a large, high-flow arteriovenous malformation during hypotension and hypothermia induced by a percutaneous cardiopulmonary support system. J Neurosurg 1997; 87: 440-444. Karibe H, Chen SF, Zarow GJ, Gafni J, Graham SH, Chan PH, and Weinstein PR. Mild intraischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats. Brain Res 1994; 649:12-18. Kety SS, Schmidt CF. The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest 1946; 25: 107-119. Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27: 484-492. Kidwell CS, Alger JR, Saver JL. Evolving paradigms in neuroimaging of the ischemic penumbra. Stroke. 2004; 35(11 Suppl 1):2662-2665. Lanier WI, Iaizzo PA, Murray MJ. The effect of convective cooling and rewarming on systematic and central nervous system physiology in isoflurane-anesthetized dogs. Resuscitation. 1992; 23:121-136. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain. 1990; 113 ( Pt 1):27-47. Lovblad KO, El-Koussy M, Oswald H, Baird AE, Schroth G, Mattle H. Magnetic resonance imaging of the ischaemic penumbra. Swiss Med Wkly 2003; 133(41-42):551-559. Luypaert R, Boujraf S, Sourbron S, Osteaux M. Diffusion and perfusion MRI: basic physics. Eur J Radiol 2001; 38(1):19-27. Madsen PL, Holm S, Herning M, Lassen NA. Average blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety-Schmidt technique. J Cereb Blood Flow Metab 1993; 13(4):646-655. Manthous CA, Hall JB, Olson D, Singh M, Chatila W, Pohlman A, Kushner R, Schmidt GA, and Wood LD. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med 1995; 151:10-14. Marchal G, Rioux P, Petit-Taboue MC, Sette G, Travere JM, Le Poec C, Courtheoux P, Derlon JM, Baron JC. Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 1992; 49(10):1013-20. Marion DW, Obrist WD, Carlier PM, Penrod LE, and Darby JM. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 1993; 79: 354-362. McHenry LC Jr, Merory J, Bass E, et al: Xenon-133 inhalation method for regional cerebral blood flow measurements: Normal values for and test-retest results. Stroke. 1978; 9:396-399. Mellegard P, Nordstrom CH. Epidural temperature and possible intracerebral temperature gradients in man, Br. J. Neurosurg 1990; 4:31-38. Metz C, Holzschuh M, Bein T, Woertgen C, Frey A, Frey I, Taeger K, and Brawanski A. Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J Neurosurg 1996; 85: 533-541. Michenfelder JD and Milde JH. The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology. 1991; 75: 130-136. Michenfelder JD and Theye RA. Hypothermia: effect on canine brain and whole-body metabolism. Anesthesiology. 1968; 29: 1107-1112. Mies G, Paschen W, Hossmann KA. Cerebral blood flow, glucose utilization, regional glucose, and ATP content during the maturation period of delayed ischemic injury in gerbil brain. J Cereb Blood Flow Metab 1990; 10:638-645. Mohr JP, et al. Chapter forty: cerebral blood flow and metabolism in human cerebral disease. Stroke: pathophysiology, diagnosis, and management. 4th ed. Philadelphia: Churchill Livingstone. 2004: 799-819. Mori K, Maeda M, Miyazaki M, and Iwase H. Misery perfusion caused by cerebral hypothermia improved by vasopressor administration. Neurol Res 1999; 1: 585-592. Mukherjee P, Kang HC, Videen TO, McKinstry RC, Powers WJ, Derdeyn CP. Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. Am J Neuroradiol 2003; 24(5):862-871. Nakane H, Ibayashi S, Fujii K, Sadoshima S, Irie K, Kitazono T, Fujishima M. Cerebral blood flow and metabolism in patients with silent brain infarction: occult misery perfusion in the cerebral cortex. J Neurol Neurosurg Psychiatry 1998; 65:317-321. Nemoto EM, Yonas H, Chang Y. Stages and thresholds of hemodynamic failure. Stroke. 2003; 34(1):2-3. Ogawa S, Lee TM, Barrere B. The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 1993; 29:205-210. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 1990(a); 87:9698-9872. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990(b); 14:68-78. Ooboshi H, Ibayashi S, Takano K, Sadoshima S, Kondo A, Uchimura H, and Fujishima M. Hypothermia inhibits ischemia- induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 2000; 884: 23-30. Paczynski R, Chung HDM. Pathophysiology of Ischemic Injury. In: Fisher M, ed. Stroke Therapy. Butterword-Heinemann. 1995: 29-64. Parsons MW, Yang Q, Barber PA, Darby DG, Desmond PM, Gerraty RP, Tress BM, Davis SM. Perfusion magnetic resonance imaging maps in hyperacute stroke: Relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke. 2001; 32:1581-1587. Powers WJ, Grubb RL Jr, Darriet D, and Raichle ME. Cerebral blood flow and cerebral metabolic rate of oxygen equirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 1985 ; 5: 600-608. Prudhomme M, Mattei-Gazagnes M, Fabbro-Peray P, Puche P, Chabalier JP, Delacretaz G, Francois-Michel LF, Godlewski G. MRI thermodosimetry in laser-induced interstitial thermotherapy. Lasers Surg Med. 2003; 32(1):54-60. Reith J, Jorgensen HS, Pedersen PM, Nakayama H, Raaschou HO, Jeppesen LL, and Olsen TS. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996; 347: 422-425. Reuler JB. Hypothermia: pathophysiology, clinical settings, and management. Ann Intern Med 1978; 89:519-527. Rosenbaum S. Evaluation of human stroke by MR imaging. 2000:1-155. Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol 1954; 179:85-88. Sakoh M, Gjedde A. Neuroprotection in hypothermia linked to redistribution of oxygen in brain. Am J Physiol Heart Circ Physiol 2003; 285(1):H17-25. Sakoh M, Østergaard L, Røhl L, Smith DF, Simonsen CZ, Sørensen JC, Poulsen PV, Gyldensted C, Sakaki S, and Gjedde A. Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs. J Neurosurg 2000; 93: 647-657. Schubert A. Should mild hypothermia be routinely used for human cerebral protection? The flip side. J Neurosurg Anesth 1992; 4:616-620. Schwab M, Bauer R, and Zwiener U. Mild hypothermia prevents the occurrence of cytotoxic brain edema in rats. Acta Neurobiol Exp 1998; 58: 29-35. Schwab S, Spranger M, Aschoff A, Steiner T, and Hacke W. Brain temperature monitoring and modulation in patients with severe MCA infarction. Neurology. 1997; 48: 762-767. Sessler DI. Deliberate mild hypothermia. J Neurosurg Anesthesiol 1995; 7: 38-46. Shimojyo S, Scheinberg P, Kogure K, Reinmuth OM. The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption. Neurology. 1968; 18(2):127-133. Smith SL and Hall ED. Mild pre- and posttraumatic hypothermia attenuates blood-brain barrier damage following controlled cortical impact injury in the rat. J Neurotrauma 1996; 13: 1-9. Sobesky J, Weber OZ, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, Heiss WD. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke. 2005; 36(5):980-985. Sutton LN, McLaughlin AC, Dante S, Kotapka M, Sinwell T, Mills E. Cerebral venous oxygen content as a measure of brain energy metabolism with increased intracranial pressure and hyperventilation. J Neurosurg 1990; 73:927-932. Touzani O, Young AR, Derlon JM, Beaudouin V, Marchal G, Rioux P, Mezenge F, Baron JC, and MacKenzie ET. Sequential studies of severely hypometabolic tissue volumes after permanent middle cerebral artery occlusion. A positron emission tomographic investigation in anesthetized baboons. Stroke. 1995; 26: 2112-2119. Wainwright MS, Sheng H, Sato Y, Burkhard Mackensen G, Steffen RP, Pearlstein RD, Warner DS. Pharmacological correction of hypothermic P(50)shift does not alter outcome from focal cerebral ischemia in rats. Am J Physiol Heart Circ Physiol 2002; 282(5): 1863-1870. Wise RJ, Bernardi S, Frackowiak RS, Legg NJ, Jones T. Serial observations on the pathophysiology of acute stroke: The transition from ischemia to infarction as reflected in regional oxygen extraction. Brain 1983; 106:197-222. Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Nakamura K, Yamamoto Y, Yonekura Y, Konishi J, Kimura J. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry 1996; 61:18-25. Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Ueno M, Nishizawa S, Konishi J, Shio H. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive disease. J Nucl Med 1999; 40:1992-1998. Young WL, McCormick PC. Perioperative management of intracranial catastrophes. Crit Care Med 1989; 5:821-848. Zhao W, Alonso OF, Loor JY, Busto R, and Ginsberg MD. Influence of early posttraumatic hypothermia therapy on local cerebral blood flow and glucose metabolism after fluid-percussion brain injury. J Neurosurg 1999; 90: 510-519. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36823 | - |
dc.description.abstract | 腦血管疾病長年以來高居十大死亡原因的第二名,僅次於癌症。也是導致成人殘障的主要原因,造成社會成本相當大的負擔。腦血管疾病依其成因又可以區分為缺血性中風和出血性中風。
缺血時大腦的血流動力學會發生許多改變:當大腦灌流壓力(CPP)逐漸減少時,腦中的小動脈會擴張,使腦血管阻力(CVR)減小,以維持有效的大腦血液流速(CBF)。但當CPP的減少超過自我調控代償的能力範圍之後,血中氧氣被利用率(OEF)會逐漸提升。如果OEF上升到100%之後,CPP仍然繼續下降,大腦的功能將因為能量不足而出現異常。如果CPP降低的情形仍然持續或更加惡化,終將造成永久性的腦組織傷害。如果在缺血性中風病程初期,可以區別出哪個範圍的腦組織受損但仍然存活、哪個範圍的腦組織已經死亡,相信就可以在合適的病人身上早期地給予適當的治療。OEF的增加,就是一個重要的生理指標。OEF增加的區域,代表了氧氣需求量大於減少血流所能供應的,也意味著這些細胞是具有生理活性的。 目前降低體溫已經被當作是一種治療的方法,可被用在像是重大手術進行當中來減低器官術後的併發症、大腦創傷、或是缺血性中風的患者身上。其所帶來有利的治療效果,是因為會減少組織氧氣的代謝需求,使得組織可以忍受更長時間的無氧代謝狀態。另外的原因則包括:可以減少腦內壓力的上升,維持粒線體的功能,抑制興奮性神經傳導物質像是麩胺酸或甘胺酸的釋放。但過去文獻關於降低體溫究竟會對OEF帶來什麼樣的影響,並沒有明確的結論。 目前公認可以測量CBF、大腦氧氣代謝率(CMRO2),甚至於OEF的影像工具是正子發射斷層掃描(PET)。但此檢查的缺點包括:因為設備和放射源取得不易而不容易執行;耗費時間;空間解像力不高;具有放射性。過去十多年來,隨著電腦技術的進步和超磁導研究的突破,磁振造影(MRI)已經被廣泛運用在中風這個疾病的診斷和預後治療追蹤上,成為重要的影像工具。除了可以從傳統的脈衝序列,如T1WI和T2 WI得到大腦解剖構造的訊息,更可使用DWI和PWI之間異常範圍的不一致性來做到預測缺血半陰影區域的目的,也已被使用在新治療方法臨床試驗中,作為篩選病人的方法。近年來開始有人利用對偵測去氧血紅素含量有敏感性的新脈衝序列-BOLD對比技術,企圖來測量大腦的血氧飽和度,甚至是OEF。 此研究希望運用此對磁場變化敏感的特殊MRI脈衝序列,以兔子為動物模型,測量降低體溫前後之真實生理數值,並與MRI所測得降低體溫前後兔子大腦的OEF相比較,來證明兩者之間的相關性。研究的結果顯示,此MRI脈衝技術所測得的兔子大腦OEF,在降溫之後,有統計顯著的下降,符合降溫會使大腦氧氣被利用率減低的觀念。降溫之後,頸動靜脈中二氧化碳分壓的差值也會隨之減小,亦間接證明氧氣代謝率的下降。而以此MRI脈衝技術所測得年輕正常志願受試者的大腦氧氣利用率,與文獻值相似。 | zh_TW |
dc.description.abstract | Cerebrovascular disease is the second most common cause of death among adults in Taiwan, just behind the cancer for many years. It also contributes to most case of morbidity and brings a great burden to society. According its etiology, cerebrovascular disease can be subcategorized as ischemic and hemorrhagic stroke.
Many hemodynamic changes will consequently happens while ischemia. As cerebral perfusion pressure falls, cerebral blood flow (CBF) is initially maintained by arteriolar dilation. When vasodilatory capacity has been exceeded, cerebral autoregulation fails, and CBF begins to decrease rapidly. A progressive increase in oxygen extraction fraction (OEF) preserves cerebral oxygen metabolism. When the increase in OEF is no longer able to maintain the energy needs of the brain, cortical dysfunction may be observed. If there is no improvement in perfusion, permanent injury is the destiny. If we can differentiate irreversibly damaged tissue from functionally impaired but viable tissue, beneficial treatment for select patients may be possible. Increase in OEF seems to be a good physiologic indicator for possible area of ischemic penumbra. Hypothermia is regarded as a therapy to protect brain tissue during surgery and appears to improve the clinical course of patients with acute ischemic stroke and traumatic brain injury. The beneficial effects owing to reduced aerobic demand and decline of cerebral metabolic rate of oxygen make tissue more tolerable to ischemia. Other protective mechanisms include reduce the increased intracranial pressure, maintenance of mitochondrial function, inhibition of neuroexcitatory transmitter release. However, the relationship between hypothermia and OEF is unclear. Positron emission tomography (PET) is the imaging modality of choice for measurement of CBF, CMRO2 and even OEF. But it has great disadvantage in its availability, time-consuming, poor spatial resolution and radiation. During the last 10 years, major advances in Magnetic Resonance Imaging (MRI) have made it possible to visualize early changes in patients suffering from ischemic stroke. The combination of DWI and PWI has promising future in identifying ischemic areas potentially salvageable. Recently, a novel MRI sequence based on the BOLD contrast is used to assess the extent of deoxygenation in ischemic tissue and to derive the OEF. Our preliminary results show that significantly decreased cerebral oxygen extraction fraction and CO2 production of rabbits after hypothermia and normal volunteers have similar OEF value as previous reports using noninvasive MR technique. We believe this technique provide a possible immediate imaging modality to monitor the physiological change in study of ischemic stroke. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:17:46Z (GMT). No. of bitstreams: 1 ntu-94-P92421015-1.pdf: 1217360 bytes, checksum: 68f0720acab087b52e31dfac2fd115ae (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 一、中文摘要 ------------------------------------------- 1
二、緒論 ----------------------------------------------- 2 1. 引言 (Introduction) 2. 降低體溫 (Hypothermia) 3. 氧氣被利用率(Oxygen extraction fraction) 4. 正子發射斷層掃描 (PET) 5. 磁振造影掃描 (MRI) 6. 研究目的 (Purpose) 三、研究方法與材料 ------------------------------------ 8 1. 實驗設計 (1) 年輕正常受試者 (2) 動物實驗第一部分 (3) 動物實驗第二部分 2. 統計方法 四、結果 ---------------------------------------------- 11 1. 年輕正常受試者 2. 動物實驗第一部份 3. 動物實驗第二部分 五、討論 ---------------------------------------------- 12 六、展望 ---------------------------------------------- 15 七、論文英文簡述 -------------------------------------- 16 八、參考文獻 ------------------------------------------ 17 九、圖表 ---------------------------------------------- 24 | |
dc.language.iso | zh-TW | |
dc.title | 運用磁振造影技術測定大腦氧氣被利用率 | zh_TW |
dc.title | Measurement of Cerebral Oxygen Extraction Fraction Using Magnetic Resonance Imaging Technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊泮池(Pan-Chyr Yang),葉炳強(Ping-Keung Yip) | |
dc.subject.keyword | 磁振造影,大腦,氧氣被利用率, | zh_TW |
dc.subject.keyword | MRI,brain,oxygen extraction fraction, | en |
dc.relation.page | 40 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。