Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3681
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳蕙芬
dc.contributor.authorHsiang-yan Huangen
dc.contributor.author黃湘燕zh_TW
dc.date.accessioned2021-05-13T08:35:55Z-
dc.date.available2019-09-01
dc.date.available2021-05-13T08:35:55Z-
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation1. LATEEF A, Oloke JK, Kana EBG, Sobowale BO, Ajao SO, and Bello BY. (2010). Keratinolytic activities of a new feather-degrading isolate of Bacillus cereus LAU 08 isolated from Nigerian soil. Int. Biodeterior. Biodegradation 64: 162-165.
2. Abdel-Razek AS, Refaat BM, Abdel-Shakour EH, Zaher R, and Mohamed MK. (2015). Biodegradation of Phenol by Microbacterium terregenes Isolated from oil field norm soil. Appl. Environ. Microbiol. 3: 63-69.
3. Ghosh A, Chakrabarti K, and Chattopadhyay D. (2009). Cloning of feather-degrading minor extracellular protease from Bacillus cereus DCUW: dissection of the structural domains. Microbiology 155: 2049-2058.
4. Acda M. (2010). Waste Chicken Feather as Reinforcement in Cement-Bonded Composites. Philipp J Sci. 139: 161-166.
5. Amina H, Boudjema S, Bassem J, Soumaya H, Bilal K, Mokhtar B, Abdelmalek B, and Ali L. (2014). Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J. Biosci. Bioeng. 117: 413-421.
6. Muga A, Arrondo JLR., Bellon T, Sancho J, and Bernabeu C. (1993). Structure and Functional Studies on the Interaction of Sodium Dodecyl Sulfate with β-Galactosidase. Arch. Biochem. Biophys. 300: 451-457.
7. Selvam B, and Vishnupriya K. (2012). Biochemical and Molecular Characterization of Microbial Keratinase and Its Remarkable Applications. Int J Pharm Biol Arch. 3: 267-275.
8. Bhuyan AK. (2009). On the Mechanism of SDS-Induced Protein Denaturation. Biopolymers, 93: 186-199.
9. Bottone J.E. (2010). Bacillus cereus, a Volatile Human Pathogen. Clin. Microbiol. Rev. 23: 382-399.
10. Williams CM, Richter CS, Mackenzie JM, and Shih CH. (1990). Isolation, Identification, and Characterization of a Feather-Degrading Bacterium. Appl. Environ. Microbiol. 56: 1509-1516.
11. Welker NE, and Campbell LL. (1967). Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J. Bacteriol. 94: 1124-1131.
12. Usova VE, and Ekiksson S. (1997). The effects of high salt concentrations on the regulation of the substrate specificity of human recombinant deoxycytidine kinase. Eur. J. Biochem. 248: 762-766.
13. Iruolaje FO, Ogbeba J, Tula MY, Ijebor JA, and Dogo BA. (2016). Isolation and Identification of Keratinolytic Bacteria that Exhibit Feather-degrading Potentials. J. Adv. Biol. Biotechnol. 5: 1-9.
14. Hasan F, Shah AA, Javed S, and Hameed A. (2010). Enzymes used in detergents: Lipases. Afr. J. Biotechnol. 9: 4836-4844.
15. Taylor G., Hoare M., Gray DR, and Marston FAO. (1986). Size and Density of Protein Inclusion Bodies. Biotechnology 4: 553-557.
16. Potvin G, Ahmad A, and Zhang Z. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochem. Eng. J. 64: 91-105.
17. Gong J, Wang Y, Zhang D, Li H, Zhang X, Zhang R, Lu Z, Xu Z, and Shi J. (2015). A Surfactant-stable Bacillus pumilus K9 α-Keratinase and Its Potential Application in Detergent Industry. Chem. Res. Chin. Univ. 31: 91-97.
18. ,Radha S, and Gunasekaran P. (2007). Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J. Appl. Microbiol. 103: 1301-1311.
19. Lambers H, Piessens S, Bloem A, Pronk H, and Finkel P. (2006). Natural skin surface pH is on average below 5, which is beneficial for its resident flor. Int J Cosmet Sci. 28: 359-370.
20. Bragulla HH, and Homberger DG. (2009). Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 214, 516-560.
21. Lin HH, Yin LJ, and Jiang ST. (2009). Cloning, Expression, and Purification of Pseudomonas aeruginosa Keratinase in Escherichia coli AD494(DE3) pLysS Expression System. J. Agric. Food Chem. 57: 3506-3511.
22. Nagal S, and Jain PC. (2010). Feather Degradation by Strains of Bacillus Isolated from Decomposing Feathers. Braz. J. Microbiol. 41: 196-201.
23. Warrent CJ, and Cheatum GS. (1966). Effect of Neutral Salts on Enzyme Activity and Structure. Biochemistry 5: 1702-1707.
24. Qiao JQ, Wu HJ, Huo R, Gao XW, and Borriss R. (2014). Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem. biol. technol. agric. 1: 1-14.
25. Kannappan S and Bhaarathi D. (2012). Exploration on Amino Acid Content and Morphological Structure in Chicken Feather Fiber. JTATM. 7: 1-6.
26. Nwaogu LA, Onyeze GOC, and Nwabueze RN. (2008). Degradation of diesel oil in a polluted soil using Bacillus subtilis. Afr. J. Biotechnol. 7(12): 1939-1944.
27. Cortezi M, Contiero J, Lima de CJB, Lovaglio RB, and Monti R. (2008). Characterization of a Feather Degrading by Bacillus amyloliquefaciens Protease: A New Strain. WJAS. 4, 648-656.
28. Greenwold MJ, Bao W, Jarvis DE, Hu H, Li C, Thomas M, Gilbert P, Zhang G, and Sawyer RH. (2014). Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol. Biol. 14: 249-265.
29. Mozammel H., Khandaker AZS, Hiroko K, and Tatsuji S. (2005). Keratinolytic Activity of Some Newly Isolated Bacillus species. J. Biol. Sci. 5: 193-200.
30. Kim MJ, Han JK, Park JS, Lee JS, Lee SH, Cho JI, and Kim KS. (2015). Various Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains. J. Microbiol. Biotechnol, 25: 872-880.
31. Molyneux GS. (1959). The digestion of Wwool by a keratinolytic Bacillus. Aust J Biol Sci. 12: 274-281.
32. Vasantha N, Thompson DL, Rhodes C, Banner C, Nagle J, and Filpula D. (1984). Genes for Alkaline Protease and Neutral Protease from Bacillus amyloliquefaciens Contain a Large Open Reading Frame Between the Regions Coding for Signal Sequence and Mature Protein. J. Bacteriol., 159: 811-819.
33. Jeevana Lakshmi P, Kumari Chitturi Ch M, and Lakshmi VV. (2013). Efficient Degradation of Feather by Keratinase Producing Bacillus sp. Int J Microbiol. 2013: 1-7.
34. Mokrejs P, Svoboda P, Hrncirik J, Janacova D, and Vasek V. (2010). Processing poultry feathers into keratin hydrolysate through alkaline-enzymatic hydrolysis. Waste Manag Res. 1-8.
35. Talboys JP, Owen WD, Healey RJ, Withers JAP, and Jones LD. (2014). Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol. 14: 51.
36. Fraser RDB, Macrae TP, Parry DAD, and Suzuki E. (1971). The structure of feather keratin. Polymer 12: 35-57.
37. Sapna R, and Yamini V. (2011). Study of Keratin Degradation by Some Potential Bacteriol Isolates from Soil. J. Soil Sci. 1: 01-03.
38. Ye R, and Harte F. (2013). Casein maps: Effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. J. Dairy Sci. 96: 799-805.
39. Bano S, Lateef M, Iqbal S, Naqvi B, and Iqbal L. Role of Protein Denaturing Agents and Edta on α-Amylase Activity from Bacillus subtilis KIBGE HAS. IJPCBS. 4: 411-415.
40. Salager JL. (2002). Surfactants Types and Uses (2ed.): Laboratorio FIRP, Escuela de Ingenieria Quimica, Universidad de Los Andes, and Mérida 5101 Venezuela.
41. Cho SJ, Oh SH, Pridmore RD, Juillerat MA, and Lee CH. (2003). Purification and Characterization of Proteases from Bacillus amyloliquefaciens Isolated from Traditional Soybean Fermentation Starter. J. Agric. Food Chem. 51: 7664-7670.
42. Cheng SW, Hu HM, Shen SW, Takagi H, Asano M, and Tsai YC. (1995). Production and Characterization of Keratinase of a Feather-degrading Bacillus licheniformis PWD-1. Biosci. Biotechnol. Biochem. 59: 2239-2245.
43. Gopinath CBS, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, Ruslinda AR, and Arshad MK. (2015). Biotechnological Aspects and Perspective of Microbial Keratinase Production. Biomed Res Int. 2015: 1-10.
44. Singh SM, and Panda AK. (2005). Solubilization and Refolding of Bacterial Inclusion Body Proteins. J. Biosci. Bioeng., 99: 303-310.
45. Sivakumar T, Shankar T, Vijayabaskar P, and Ramasubramanian V. (2011). Statistical optimization of keratinase production by Bacillus cereus. GJBB. 6: 197-202.
46. Paul T, Das A, Halder KS, Pati RR, Mandal A, Dasmohapatra PK, and Mondal KC. (2013). Biochemical and structural characterization of a detergent stable alkaline serine keratinase from Paenibacillus Woosongensis TKB2: A potential additive for laundry detergent. Waste Biomass Valorization 5: 563-575.
47. Herskovits TT, Gadegbeku B, and Jaillet H. (1970). On the structural stability and solvent denaturation of proteins J. Biol. Chem. 245: 2588-2598.
48. Gallagher T, Gilliland G, Wang L, and Bryan P. (1995). The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'. Structure 3: 907-914.
49. Matikevičienė V, Masiliūnienė D, and Grigiškis S. (2009). Degradation of keratin containing waste by bacteria with keratinolytic activity. Paper presented at the environment technology resources proceedings of the 7th international scientific and practical conference.
50. Williams CM. (2013). Poultry waste management in developing countries. Poultry Development Review, 46-50.
51. Bergfeld FW, Belsito VD., Hill AR, Klaassen DC., Liebler CD, Marks GJ, Shank CR, Slaga JT, and Snyder WP. (2015). Safety Assessment of Inorganic Hydroxides as Used in Cosmetics. Retrieved from Washington, DC
52. Lin X, Kelemen WD, Miller SE, and Shih CH. (1995). Nucleotide Sequence and Expression of kerA, the Gene Encoding a Keratinolytic Protease of Bacillus licheniformis PWD-1. Appl. Environ. Microbiol., 61: 1469-1475.
53. Peng Y, Huang Q, Zhang Rh, and Zhang YZ. (2003). Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi,atraditional Chinese soybean food. Comp. Biochem. Physiol. 134: 45-52.
54. Zhang X. (2012). Applying the mutation of Bacillus subtilis and the optimization of feather fermentation medium to improve Keratinase activity. Adv Biol Chem. 2: 64-69.
55. Risk Assessment Guidance for Enzyme-Containing Products. (2005). Washington,DC: The Soap and Detergent Association.
56. 陳明汝、鍾之儀、黃如婕. (2010). 角蛋白分解酵素應用於非反芻動物飼料之研究. 動物與水產生技. 22: 21-29.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3681-
dc.description.abstract羽毛由角蛋白﹝keratin﹞構成,成分中80%以上為胺基酸,角蛋白不易分解,一般工業上使用之方法有將羽毛磨成粉末作為飼料添加物,或以強酸強鹼,處理廢棄羽毛,以羽毛粉作為添加物有分解速度緩慢、應用範圍少之缺點,以強酸強鹼方式處理羽毛則使成分受破壞因而再利用效率降低之缺點,因此開始有多篇研究針對以生物降解羽毛,使羽毛在自然狀態下分解,並保有其胺基酸結構,提供再利用價值,而部分研究亦指出分解羽毛之酵素角蛋白酶﹝keratinase﹞,除降解羽毛外,尚有其他功能,因此實驗先由環境分離菌株,接著針對菌株產生之酵素活性及其基因功能等進行探討,提供酵素開發之參考。
研究中環境篩選所得Bacillus cereus及Bacillus amyloliquefaciens將其訂為Bacillus cereus Ker103及Bacillus amyloliquefaciens Ker103,以直接培養獲得粗萃蛋白質及大腸桿菌表現系統,兩種方式獲得分解羽毛之酵素,比較酵素生產情況,並測試酵素於不同環境條件下,酵素之活性及穩定性,依據生產方式不同,獲得之酵素純度及數量亦有所差異,此兩菌所產生之羽毛分解酵素均對環境具有良好耐受性及穩定性,在pH 3.0-10.0條件下均保有活性,溫度介於20-70℃之間酵素皆可作用,其中Bacillus cereus Ker103之粗萃酵素在pH 8.0及50℃下活性最佳,Bacillus amyloliquefaciens Ker103粗萃酵素則在pH 7.0及40℃下有最佳活性,以PCR方式選殖酵素基因,Bacillus cereus Ker103分解羽毛之基因vpr,蛋白大小為99 kDa,Bacillus amyloliquefaciens Ker103分解羽毛基因為kerk,分子量為28.8 kDa,從蛋白質變性電泳結果判斷,此兩菌產生之羽毛分解酵素為胞外酵素,其中Vpr會形成內含體而不溶於水,因此不易純化,因此僅以直接培養獲得粗萃酵素,而kerk則以大腸桿菌BL21轉殖株培養於LB液態培養基中,以IPTG誘導,並使用6X His-tag進行純化, kerk純化之效益良好,較易生產純度較高之酵素,經純化後之kerk其最佳酸鹼反應條件為pH 9,在含高濃度鹽類環境中易失活,添加介面活性劑成分PEG-3350及Tween 20具提升酵素活性之情形,因此未來若要進行大量生產,Bacillus amyloliquefciens Ker103之KerK具有開發價值,亦可作為產品中額外添加成分,可再進行進一步探討。
zh_TW
dc.description.abstractFeather is composed of keratin, with more than 80% amino acid. According to research, keratin is difficult to degrade. Strong acid and basic chemical solvent is used on industry, which will be easily degrade feather. Some factory boil and grind feather into powder, and use it as additive fodder. But there should be more usage by feather. Since 1950, more research study about degrading feather by biodegradation. It is not only a better way to degrade feather but also maintains ingredient and function of feather. And some research also found that feather-degrading enzyme with other function. So we isolated bacterial strain from environment and have cloned a functional gene of keratinase. Then we purified the enzyme to study feature of the enzyme.
In our study, after 16s rRNA sequencing, isolated strains were confirmed as Bacillus cereus and Bacillus amyloliquefaciens, and identified as Bacillus cereus Ker103 and Bacillus amyloliquefaciens Ker103. We produced enzyme by directly culture and Escherichia coli BL21 expression system, then analyzed enzyme activity and stability. Between these two methods, purity, productivity and activity was different. Enzymes produced from these two strains are stable and tolerated in different environment. Under pH 3.0-10.0 and 20-70℃, the two enzymes keep their activity and stability. Crude enzyme produced from Bacillus cereus Ker103 indicated the best activities are under incubation condition pH 8.0 and 50℃. The crude enzyme produced from Bacillus amyloliquefaciens Ker103 show the best activity under pH 7.0 and 40℃. We use PCR to detect and clone the enzyme gene. Bacillus cereus Ker103 includes enzyme gene, vpr, with predicted molecular weight 98.9 kDa and Bacillus amyloliquefaciens Ker103 includes enzyme gene, kerk, with predicted molecular weight 28.8 kDa. From the result of SDS-PAGE of these two cultural supernatant, indicated that these two protein are extracellular enzymes. Among these two enzymes, Vpr formed inclusion body, which made it difficult to produce and purify. So we especially try to purify KerK protein by Escherichia coli BL21 expression system to improve its purity. Then we detected enzyme activity, we found that purified enzyme show the best activity under pH 9.0, easily get lost activity under high salt concentration condition. The addition of surfactant Tween 20 and PEG-3350 improve the enzyme activity. We concluded that KerK showed its potential on large scale production and application.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:35:55Z (GMT). No. of bitstreams: 1
ntu-105-R03b22039-1.pdf: 1759436 bytes, checksum: 72fa4ba861b199c028da43098414c58d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
摘要 i
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
前言 1
壹、 背景 1
貳、 羽毛及keratin構造 2
參、 生物降解羽毛 2
肆、 已知微生物降解keratin能力 4
伍、 目前應用探討 4
陸、 Bacillus cereus介紹及其降解羽毛之研究 5
柒、 Bacillus amyloliquefaciens菌種特性介紹 6
捌、 羽毛分解酵素﹝keratinase﹞基因研究 6
玖、 Pichia pastoris重組蛋白表現系統 7
材料與方法 8
壹、 材料 8
一、 菌株及質體 8
二、 藥品及試劑 9
三、 實驗器材 9
四、 分析及製圖軟體 9
貳、 實驗設計及方法 10
一、 分解羽毛之菌種來源及初步篩選 10
二、 菌株篩選 10
三、 菌種保存 11
四、 16S rDNA菌種鑑定 11
五、 收集培養上清液進行酵素活性分析 11
六、 勝任細胞﹝competent cell﹞製備 11
七、 PCR反應 12
八、 PCR產物純化 12
九、 限制酶截切作用﹝digestion﹞ 12
十、 接合作用﹝ligation﹞ 12
十一、 轉形作用﹝transformation﹞ 13
十二、 基因表現質體建構 13
十三、 蛋白質表現 14
十四、 蛋白質膠體電泳﹝SDS-PAGE﹞ 15
十五、 酵素活性測試 16
結果 19
一、 篩選分離所得之菌株及鑑定 19
二、 菌體直接利用之可能性 19
三、 收集培養上清液之電泳情形 20
四、 上清液酵素活性測試 21
I. 粗萃蛋白於20-70℃下活性分析 21
II. 粗萃蛋白於pH 3-10下活性分析 21
III. 粗萃蛋白於20-70℃下活性維持時間 22
五、 基因序列分析結果 23
六、 大腸桿菌蛋白質表現及純化情形 23
七、 純化後之酵素活性測試 24
I. 管柱流洗後酵素於20-70℃下活性測試 24
II. 管柱流洗後酵素於pH 3.0-10.0下活性測試 25
III. 管柱流洗後酵素於20-70℃下活性維持時間 25
八、 管柱流洗後酵素添加不同化學藥劑之活性分析 26
九、 管柱流洗後酵素於不同介面活性劑下活性分析 26
十、 pPICZαA質體構築 27
討論 28
一、 羽毛降解結果探討 28
二、 粗萃酵素活性探討 29
三、 管柱流洗後酵素活性反應條件探討 30
四、 化學藥劑對活性之影響 30
五、 添加介面活性劑對酵素應用之探討 31
六、 kerk基因 32
結論 34
參考文獻 35
圖表集 42
附錄 83
dc.language.isozh-TW
dc.subject生物降解羽毛zh_TW
dc.subject臘樣芽胞桿菌zh_TW
dc.subject液化澱粉芽胞桿菌zh_TW
dc.subject角蛋白?zh_TW
dc.subjectBacillus cereusen
dc.subjectkerken
dc.subjectvpren
dc.subjectkeratinaseen
dc.subjectBacillus amyloliquefaciensen
dc.titleBacillus amyloliquefaciens之角蛋白酶之研究zh_TW
dc.titleThe study of keratinase from Bacillus amyloliquefaciensen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃慶璨,陳昭瑩,羅凱尹,鄧文玲
dc.subject.keyword臘樣芽胞桿菌,液化澱粉芽胞桿菌,角蛋白?,生物降解羽毛,zh_TW
dc.subject.keywordBacillus cereus,Bacillus amyloliquefaciens,keratinase,vpr,kerk,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201602996
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf1.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved