請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36803完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳 | |
| dc.contributor.author | Yu-Ching Huang | en |
| dc.contributor.author | 黃裕清 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:16:46Z | - |
| dc.date.available | 2006-07-29 | |
| dc.date.copyright | 2005-07-29 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-19 | |
| dc.identifier.citation | Part I
Anderson, P. W. (1955). 'Considerations on Double Exchange.' Phys. Rev. 100, 675. Baibich, M. N., Broto, J. M., Fert, A., Petroff, F. (1988). 'Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattice.' Phys. Rev. Lett. 61, 2472. Balcells, L., Fontcuberta ,J. (1998). 'High-field magnetoresistance at interfaces in manganese perovskites.' Phys. Rev. B 61(22), R14697-R14700. Bell, R. J., Millar, G. J. (2000). 'Influence of synthesis route on the catalytic properties of La0.7Sr0.3MnO3.' Solid state ionics 131, 211-220. Chahara, K. I., Ohno T. (1993). Appl. Phys. Lett. 63, 1990. Chakraborty, A., Deri, P. S. (1993). 'Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by antoignition process.' J. Mater. Res 9(4), 986-991. García-Hernández, Guinea, M., F. (2000). 'Coulomb blockade versus intergrain resistance in colossal magnetoresistive manganite granular films.' Phys. Rev. B 61(14), 9549–9552. Gross, R., Alff, L. (2000). 'Physics of grain boundaries in the colossal magnetoresistance manganites.' Journal of Magnetism and magnetic materials 211, 150-159. Gupta, A., Gong, G. Q. (1996). 'Grain-boundary effects on the magnetoresistance properties of perovskite manganite films.' Phys. Rev. B 54, R15629. Helmolt, R. v., Wecker, J. (1993). 'Giant negative magnetoresistance in perovskite like La1/3Ba1/3MnOx ferromagnetic films.' Phys. Rev. Lett. 71, 2331. Herle, J. V., McEvoy, A. J. (1996). 'A study on the LSM oxgen cathode.' Electrochimica acta 41(9), 1447-1454. Hwang, H. Y., Cheong, S.-W. (1995). 'Lattice effects on the magnetoresistance in doped LaMnO3.' Phys. Rev. Lett. 75, 914. Jahn, T. (1937). Proc. Roy. Soc. A161, 220. Julliere, M. (1975). Phys. Lett. 54A, 225. Kelvin, L. (1857). Philosophic Magazine. Kim, D. W., Kim, D. H.(2002). 'Properties of La0.7Sr0.3MnO3 thin films grown on gallium nitrides.' Solid State Communications 121, 631-634. Kingery, W. D. (1976). Introduction to Ceramics 293. Mahendiran, R., Mahesh, R. (1995). 'Room temperature giant magnetoresistance in La1-xPbxMnO3.' J. Phys. D:Appl. Phys. 28, 1743-1745. Mahendiran, R., Tiwary, S. K. (1996). 'Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems.' Phys. Rev. B 53, 3348. Manoharan, S. S., Vasanthacharya, N. Y. (1994). 'Ferromagnetic La0.6Pb0.4MnO3 thin films with giant magetoresistance at 300K.' J. Appl. Phys. 76, 3923. Millis, A. J. (1995). Phys. Rev. Lett. 74, 5144. Millis, A. J. (1996). 'Cooperative Jahn-Teller effect and electron-phonon coupling in La1-xAxMnO3.' phys. rev. B 53, 8434. Mott, N. F. (1936). 'The electrical conductivity of transition metal.' Proc Roy. Soc. A153, 699-753. Pena, A., Blanco, J. J. (1999). 'Synthesis characterization and magnetic properties of the Ln0.7A0.3Mn0.9Fe0.1O3 (Ln=La, Nd; A=Pb,Cd) manganites.' Journal of Magnetism and magnetic materials 196-197, 543-545. Jin, S., T. H. T., Cormack, M. Mc., Fastnacht, R.A., Ramesh, R., Chen, L.H. (1994). 'Thousandfold change in resistivity in Magnetoresistive La-Ca-Mn-O films.' Science 267, 413. Taguchi, H., Matsuda, D. (1992). 'Synthesis of perovksite -type (La1-xSrx)MnO3 (0<x<0.3) at low temperature.' J. Am. Ceram. Soc. 75, 1992. Vazquez-Vazquez, C., Blanco, M. C.(1998). 'Characterization of La0.67Ca0.33MnO3+d particles prepared by the sol-gel route.' J. Mater. Chem. 8(4), 991-1000. Xiong, G. C., Q. Li. (1995). 'Giant magnetoresistive memory effect in Nd0.7Sr0.3MnOz films.' Appl. Phys. Lett. 67(20), 3031. Xiong, G. C., Q. Li. (1995). 'Influence of preparation on resistivity behavior of epitaxial Nd0.7Sr0.3MnO3 and La0.67Ba0.33MnO3 – thin films.' Appl. Phys. Lett. 66, 1689. Yan, C.-H., Y.-H. Huang. (2000). 'Microstucture and transport properties of sol-gel fabricated La0.7Sr0.3MnO3 nanocrystalline films on Si(100) substrates.' Thin solid films 366, 302-305. Youichi Shimizu, T. M. (1997). 'Sol-gel synthesis of perovskite-type lanthanum manganite thin films and fine powders using metal acetylacetonate and poly(vinyl alcohol).' J. Am. Ceram. Soc. 80(10), 2702-2704. Zener, C. (1951). 'Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure.' Phys. Rev. Lett. 82, 403. 張慶瑞 (1999). '常磁電阻與異向磁電阻.' 中華民國磁性技術協會會訊第十九期, 5. Part II Chen, S. Y., Lee, S. Y. (2003). 'Phase transformation, reaction kinetics and microwave characteristics of Bi2O3–ZnO–Nb2O5 ceramics.' Journal of the European Ceramic Society 23, 873-881. Hakki, B. W. and Coleman, P. D. (1960). 'A dielectric resonatore method of measuring inductive capacities in the millimeter range.' IRE Tran. On Microwave Theory and Tech., 402-410. Hu, Y. and Huang, C. L. (2001). 'Structure and dielectric properties of bismuth-based dielectric ceramics.' Materials Chemistry and Physics 72, 60-65. J. Krupka (2001). 'Uncertainty of complex permittivity mearsurements by spilt-post dielectric resonator technique.' Journal of the European Ceramic Society 21, 2673-2676. Kajfez, D. (1984). 'Incremental frequency rule for computing the Q-factor of shielded TE0mp dielectric resonator.' IEEE Transaction on microwave theory and Tech., V. MTT-33(8). Kingery. W. D.; Bowen, H. K. U., D.R. (1975). Introduction to Ceramics, 2nd edition. Kobayashi, Y.(1985). 'Influence of conductor shields on the Q-factors of a TE0n1 dielectric resonator.' IEEE Transaction on microwave theory and Tech.(12), 131-1366. Kobayashi, Y. and Katohy, M. (1985). 'Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method.' IEEE Transaction on microwave theory and Tech. V. MTT-33(No. 7), 58~592. Kobayashi, Y. and Tanaka, S. (1980). 'Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates.' IEEE Transaction on microwave theory and Tech. V, MTT-28(10), 1077~1085. Ling, H. C., Yan, M. F. (1990). 'High dielectric constant and small temperature coefficient bismuth-based dielectric compositions.' J. Mater. Res. 5(8), 1752-1762. Liu, D. L., Y.; Huang, S.; Yao, X. (1993). 'Phase structure and dielectric properties of Bi2O3-ZnO-Nb2O5-based dielectric ceramics.' J. Am. Ceram. Soc. 76 [8], 2129-2132. Su, W. F. and Lin, S. C.(2003). 'Interfacial behaviour between Bi1.5ZnNb1.5O7•0.02V2O5 and Ag.' Journal of the European Ceramic Society 23, 2593-2596. Sutton, W. H. (1992). 'Microwave Processing od Ceramics-An overview.' Mater. Res. Soc. Symp. Proc. C. 269, 3-20. Wakino, K. (1995). 'Precise measurement method for high frequency dielectric.' IEEE. Proc., 3-8. Wang, H., Wang, X. (1997). 'Phase equilibrium in Bi2O3-ZnO-Nb2O5 system.' Ferroelectrics 195, 19-22. Wang, S. F. H. W. (1992). 'Interaction of Ag/Pd metallization with lead and bismuth oxide-based fluxes in multilayer ceramic capacitors.' J. Am. Ceram. Soc. 75 [9], 2339-2352. Yan, M. F., Ling, H. C. (1990). 'Low-firing, temperature-stable dielectric compositions based on bismuth nickel zinc niobates.' J. Am. Ceram. Soc. 73, 1106-1107. 吳明忠 (2004). '鋅鈮系無線通訊用低溫燒結微波介電材料之研究.' 台灣大學碩士論文. 翁震良 (2000). '鈦酸鋇及鈦酸鋇/鎳複合材料可靠度及電性之研究.' 台灣大學碩士論文. 陳宜君 (2002). '利用全頻譜與掃描微探顯微術研究微波材料的介電機制.' 臺灣師範大學物理所博士論文. 葉宗壽, 柳璐明 (1994). 絕緣陶瓷. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36803 | - |
| dc.description.abstract | 本研究主要包含兩個部份,分別是低煆燒溫度之超巨磁阻材料以及微波介電陶瓷材料製備天線與高介電常數值基板製程之研究。研究中的第一個部份,是利用三種不同系列之原材料,來合成奈米晶粒鑭鍶錳氧化合物 (LSM),並探討其性質上的差異,同時也利用這三種不同系列之原材料來製備鑭鍶錳氧薄膜。以氫氧化物原材料製作之LSM具有最低之煆燒溫度(500℃),乙醯丙酮金屬鹽類及硝酸鹽類原材料製作之LSM,其煆燒溫度分別為800℃及900℃。合成出來之粉末,皆具有奈米尺寸的晶粒大小,因此在物性的表現上與傳統之超巨磁阻材料有所不同。藉由互相比較其粒徑大小,可以得知金屬-絕緣溫度會隨著晶粒大小的減小而降低,而電阻值則會隨著晶粒大小降低而升高。,乙醯丙酮金屬鹽類所製備之鑭鍶錳氧化物,其具有最小之晶粒尺寸,在外加磁場為90000Oe時具有最高的磁阻值為70%。在薄膜製備方面,利用簡易的旋鍍法來製備薄膜,並藉由添加甘油的改良,可有效的製備出無裂紋、無孔洞之高緻密度薄膜;但是利用乙醯丙酮金屬鹽類為原材料來製備薄膜,則不需甘油添加物即可成高緻密度薄膜。總結來說,我們成功的研發出不同之製備奈米級鑭鍶錳氧化物的方法,除了對其性質作一系列之研究外,也成功的利用其製備出高品質之奈米級鑭鍶錳氧薄膜。
研究中的第二個部分,是對於微波介電陶瓷製備介電共振器天線與高介電陶瓷薄板之製程方面的研究。在製備介電共振器天線方面,我們利用鍛造、切削以及黏結的製程方法製備出任何想要之尺寸、形狀的介電共振器天線,並且能確保此製程對於原材料之介電性質並不會造成劣化效果。在高介電陶瓷薄板製備方面,我們透過消除加工時施加於薄板之內應力,以及燒結製程上的改善,成功的製備出具高介電性質之平坦陶瓷薄板(50mm x 50mm x 0.6mm),其介電係數可高達130。相較於目前商業上所使用之介電陶瓷薄板,可謂有極大之突破性。 | zh_TW |
| dc.description.abstract | This research includes two parts. One is low calcining colossal magnetoresistance (CMR) material. The other is the processing of microwave dielectric ceramic for antenna and high K substrate. In the first part, we synthesized La0.7Sr0.3MnO3 (LSM) by three processes involving different precursor materials and compared their properties. We also fabricated thin films by those different precursor materials. Hydroxide based raw materials provide the lowest calcining temperature of LSM (500℃), the calcining temperature of acetylacetonate based raw materials and nitrate based raw materials are 800℃ and 900℃ respectively. The properties of nanocrystalline LSM compounds are different from those of the conventional CMR materials. The metal-insulator transition temperature of LSM is reduced with decreasing crystalline grain size, but its resistance value increases as reducing the crystalline grain size. The LSM synthesized from acetylacetonate based powders exhibit the largest MR ratio of 70% (at 90000Oe) with the smallest grain size among tried raw materials. The pin hole free thin film of LSM can also be prepared by nitrate based and hydroxide based raw materials by adding glycerol. The acetylacetonate basedd raw materials provided pin hole free film without glycerol.
In the second part studied the fabrication process of dielectric resonator antenna (DRA) model and high permittivity ceramic plate. We are able to make desired sizes and shapes of DRA model via cut-and-paste fabrication using Zn3Nb2O8 powder. The DRA model maintains the dielectric properties of Zn3Nb2¬O8. We have successfully fabricated high permittivity ceramic plates (~130) by process optimization and stress elimination using BZN powders. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:16:46Z (GMT). No. of bitstreams: 1 ntu-94-R92527049-1.pdf: 8974909 bytes, checksum: 6357b8eba44860a1ab5640112964a117 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Part I
第一章 前言 1 第二章 文獻回顧與理論基礎 2 2-1 磁阻(Magnetoresistance) 2 2-1-1 常磁阻(Ordinary Magnetoresistance) 3 2-1-2 異向磁阻(Anisotropy Magnetoresistance) 3 2-1-3 穿隧磁阻(Tunneling Magnetoresistance) 4 2-1-4 巨磁阻(Giant Magnetoresistance) 5 2-1-5 超巨磁阻(Colossal Magnetoresistance) 5 2-2 超巨磁阻材料之原理 8 2-2-1 雙交換模型(Double Exchange Model) 8 2-2-2 Jahn-Teller 效應(Jahn 1937) 10 2-2-3 Millis理論(Millis 1995) 11 2-3 超巨磁阻材料之發展 12 第三章 實驗 23 3-1 實驗藥品 23 3-2 使用儀器 24 3-3 量測方法 26 3-3-1 熱分析 26 3-3-2 晶相鑑定 26 3-3-3 黏度量測 26 3-3-4 微結構與表面形態觀察 27 3-3-5 電性觀察 27 3-3-6 磁性性質量測 27 3-4 實驗步驟 28 3-4-1 合成La0.7Sr0.3MnO3粉末 28 3-4-2 製備La0.7Sr0.3MnO3薄膜 30 第四章 結果與討論 32 4-1 合成La0.7Sr0.3MnO3粉末 32 4-1-1 系列一─La(NO3)3、Mn(NO3)2、Sr(NO3)2 32 4-1-1-1 熱分析 32 4-1-1-2 晶相鑑定 34 4-1-1-3 粉末性質量測─微結構與表面型態 36 4-1-1-4 粉末性質量測─磁性與電性 37 4-1-2系列二─La(NO3)3、Mn(NO3)2、Sr(OH)2 43 4-1-2-1 熱分析 43 4-1-2-2 晶相鑑定 45 4-1-2-3粉末性質量測─微結構與表面型態 46 4-1-2-4粉末性質量測─磁性與電性 47 4-1-3系列三─La(acac)3、Mn(acac)3、Sr(acac)2 51 4-1-3-2 熱分析 53 4-1-3-3 晶相鑑定 54 4-1-3-4 粉末性質量測─微結構與表面型態 55 4-1-3-5 粉末性質量測─磁性與電性 57 4-2 薄膜的製備與性質分析 61 4-2-1 黏度測試 61 4-2-2 薄膜之晶相鑑定 61 4-2-3 薄膜之微結構觀察 63 第五章 結論 71 5-1 結論 71 5-2 鑭鍶錳氧化合物粉末之合成 71 5-3 鑭鍶錳氧化合物薄膜之製備 73 第六章 建議與未來工作 74 第七章 參考文獻 75 Part II 第一章 前言 1 第二章 文獻回顧與理論基礎 2 2-1 微波介電陶瓷 2 2-1-1 微波下介電陶瓷之行為 2 2-1-2 微波介電性質 3 2-2 微波介電性質量測 10 2-2-1 圓柱型共振腔 10 2-2-2 平行板介電共振器 12 2-2-3 SPDR法 14 2-3 鋅鈮系介電陶瓷 16 2-4 鉍鋅鈮系介電陶瓷 18 2-5 陶瓷薄帶製程 21 2-5-1漿料的配方 23 2-5-2製程變因的控制 24 第三章 實驗 26 3-1 實驗藥品 26 3-2 使用儀器 27 3-3 量測方法 28 3-3-1 晶相鑑定 28 3-3-2 粒徑分佈與比表面積 28 3-3-3 密度量測 28 3-3-4 介電性質量測 29 3-3-5 微結構觀察 29 3-4 實驗步驟 30 3-4-1 合成Zn3Nb2O8 粉末並鑑定其性質 30 3-4-2 以Zn3Nb2O8 製作介電共振器天線 31 3-4-3 合成Bi1.5Zn0.92Nb1.5O6.92粉末並鑑定其性質 33 3-4-4 以Bi1.5Zn0.92Nb1.5O6.92製備陶瓷薄板 34 第四章 結果與討論 36 4-1 Zn3Nb2O8粉末之基本性質 36 4-1-1 晶相鑑定 36 4-1-2 粒徑分布 36 4-2 Zn3Nb2O8製備天線之製程討論與性質測試 38 4-2-1 Zn3Nb2O8之理論密度與燒結密度 38 4-2-2 Zn3Nb2O8 之微結構觀察 38 4-2-3 Zn3Nb2O8介電共振器天線之製程討論 41 4-2-3-1 Zn3Nb2O8陶瓷漿料之調配 41 4-2-3-2 介電共振器天線燒結製程討論 42 4-2-4 Zn3Nb2O8的微波介電性質 45 4-2-5 Zn3Nb2O8介電共振器天線之性質 46 4-3 Bi1.5Zn0.92Nb1.5O6.92粉末基本性質 47 4-3-1 晶相鑑定 47 4-3-2 粒徑分布 47 4-4 Bi1.5Zn0.92Nb1.5O6.92製備陶瓷薄板之製程討論與性質測試 48 4-4-1 製備Bi1.5Zn0.92Nb1.5O6.92生胚薄帶之漿料討論 48 4-4-2 Bi1.5Zn0.92Nb1.5O6.92陶瓷薄板之製程討論 49 4-4-2-1 消除內應力之討論 49 4-4-2-2 改善燒結程序之討論 51 4-4-3 Bi1.5Zn0.92Nb1.5O6.92陶瓷薄板之性質 53 4-4-3-1 BZN薄板與BZN錠塊之密度比較 53 4-4-3-2 BZN薄板之微結構觀察 55 4-4-3-3 BZN薄板之微波介電性質 57 第五章 結論 58 5-1 結論 58 5-2 Zn3Nb2O8微波介電陶瓷製備介電共振腔天線的製程研究 58 5-3 Bi1.5Zn0.92Nb1.5O6.92微波介電陶瓷製備高介電常數薄板的製程研究 59 第六章 建議與未來工作 60 第七章 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 化學濕式法 | zh_TW |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | 鑭鍶錳氧化物 | zh_TW |
| dc.subject | 高介電值陶瓷薄板 | zh_TW |
| dc.subject | 共振天線 | zh_TW |
| dc.subject | sol-gel | en |
| dc.subject | high permittivity ceramic plate | en |
| dc.subject | LSM thin film | en |
| dc.subject | antenna | en |
| dc.title | 奈米級鑭鍶錳氧化物與微波介電陶瓷製程之研究 | zh_TW |
| dc.title | Study on La0.7Sr0.3MnO3 Nano-Crystalline Compounds and Microwave Dielectric Ceramic Processing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 韋文誠,郭博成,江簡富 | |
| dc.subject.keyword | 鑭鍶錳氧化物,薄膜,化學濕式法,共振天線,高介電值陶瓷薄板, | zh_TW |
| dc.subject.keyword | LSM thin film,sol-gel,antenna,high permittivity ceramic plate, | en |
| dc.relation.page | 139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 8.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
