請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36784完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張家歐(Chia-Ou Chang) | |
| dc.contributor.author | Pei-Ching Chang | en |
| dc.contributor.author | 章蓓靜 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:15:48Z | - |
| dc.date.available | 2016-07-27 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-19 | |
| dc.identifier.citation | [1] 池田拓郎 著, 陳世春 譯著, “基本壓電材料學,” 復漢社出版, 1997/12
[2] 陳麗英, “ MEMS和石英技術爭奪振盪器-訪SiTime公司副總裁Piyush Sevalia先生,” 電子工程專輯, 2011 [3] B.S. Huang, “Finite Element Method Analysis of Natural Frequencies of Single-Crystal Quartz Accelerometers,” Master Thesis, Institute of Applied Mechanics, College of Engineering, National Taiwan University, 2009 [4] Albert Killen, David Tarrant, David Jensen, “High acceleration, high performance solid state accelerometer development,” IEEE AES Systems Magazine, pp.20-25, 1994 [5] Sungkyu Lee, “Photolithography and Selective Etching of an Array of Surface Mount Device 32.768 kHz Quartz Tuning Fork Resonators: Definition of Side-Wall Electrodes and Interconnections Using Stencil Mask,” The Japan Society of Applied Physics, 40, Pt. 1, No.9A, pp.5480-5484, 2001 [6] R.M. Langdon, “Resonator Sensors-A Review,” J. Phys. E: Sci. Instrum, 18, pp.103-115, 1985 [7] H.E. Karrer , J.A. Leach, “A quartz resonator pressure transducer,” IEEE Transactions on Industrial Electronics and Control Instrumentation, 1969 [8] E.Karrer, “Low range quartz resonator pressure transducer,” ISA Trans. 16 No 2 60-8, 1977 [9] J.M. Paros, “Digital quartz transducers for absolute pressure measurement,” ISA 21st Int. Instrum. Symp. Philadelphia USA, 1975 [10] N.R. Serra, “Technical report on the quartz resonator digital accelerometer,” 1968 [11] E.P. EerNisse, G.J. Banik, “Vibrating quartz force sensor for magnetic suspensions systems,” ISA 29th Int. Instrumentation Symp. 2-6, Albuquerque USA ,pp 219-26 ,1983 [12] R.G. Kirman, “A vibrating quartz force sensor,” Transducer Tempcon Conf. 14-16, 1982 [13] William C. Albert., “Force Sensing Using Quartz Crystal Flexure Resonators,” 38th Annual Frequency Control Symposium, pp.233-239, 1984 [14] W.J. Kass, G. S. Snow, “Double-ended tuning fork quartz accelerometer,” 40th Annual Frequency Control Symposium, pp.230-236, 1986 [15] Greger Thornell, Håkan Rapp, Klas Hjort, “X-cut miniature tuning forks realized by ion track lithography,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(1), pp.8-15, January 2000 [16] Hideaki Itoh, Tomoyuki Yuasa, “An Analysis of Frequency of A Quartz Crystal Tuning Fork by Sezawa's Theory,” IEEE International Frequency Control Symposium, pp.921-925, 1998 [17] Hideaki Itoh, Takashi Matsumoto, “An analysis of frequency of a quartz crystal tuning fork by Sezawa's approximation-the effect of clamped position of its base,” Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, pp.494-500, 1999 [18] Hideaki Itoh, Yook-Kong Yong, “An Analysis of Frequency of A Quartz Crystal Tuning Fork By Sezawa's Approximation and Winkler’s Foundation of The Supporting Elinvar Alloy Wire,” IEEE/EIA International Frequency Control Symposium and Exhibition, pp.420-424, 2000 [19] Sungkyu Lee, Yangho Moon, Jeongho Yoon, Hyungsik Chung, “Analytical and finite element method design of quartz-tuning fork resonators and experimental test of samples manufactured using photolithography 1-significant design parameters affecting static capacitance C0,” Elsevier, Vacuum 75, pp.57-69, 2004 [20] Sungkyu Lee, Yangho Moon, Jaekyu Lee, Jeongho Yoon, Ji-Hoon Moon, Jong-hee Kim, Seung-Hyun Yoo, Hyungsik Chung, “Analytical and finite element method design of quartz-tuning fork resonators and experimental test of samples manufactured using photolithography 2: comprehensive analysis of resonance frequencies using Sezawa's approximations,” Elsevier, Vacuum 78, pp.91-105, 2005 [21] Q.Wang, S.T. Quek, “Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator,” Smart mater. Struct. 9, pp.103-109, 1999 [22] Jan Söderkvist, “Using FEA To Treat Piezoelectric Low-frequency Resonators,” 1997 IEEE International Frequency Control Symposium, pp.634-642, 1997 [23] E.D. Reedy, JR., W.J. Kass, “Finite-element analysis of a quartz digital accelerometer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37(5), pp.464-474, 1990 [24] M.T. Chen, “Theoretical Analysis of Natural Frequencies of Single-Crystal Quartz Accelerometers,” Master Thesis, Institute of Applied Mechanics, College of Engineering, National Taiwan University, 2009 [25] C.T. Chang, “Free-Vibration Analysis of Piezoelectric-Quartz Double-Ended Tuning Fork,” Master Thesis, Institute of Applied Mechanics, College of Engineering, National Taiwan University, 2010 [26] Charles Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2005 [27] 張沛霖等, “壓電材料與器件物理,” 山東科學技術出版社 [28] 壓電效應及材料, http://ins22web.seu.edu.cn/chgq/chap1-11/cgq601-1.htm [29] “IEEE Standard on Piezoelectricity (1987),” Institute of Electrical and Electronics Engineers, Inc. [30] 述本正美, 廖詩文, “高頻通訊用晶體振盪器的技術及發展,” 電子與材料雜誌, 第13期, pp.126-131, 2002 [31] TXC Corporation, http://www.txccrystal.com/index.html [32] Tiller Jr., Peter N., Mike Johnson, “Piezoelectric Ceramics: Science Meets Pottery,” Electronic Design, 2/14/2008, Vol. 56 Issue 3, p51-56 [33] Jinhua Zhengke Electronics Co., Ltd., http://www.cnzkc.com/en/index.aspx [34] 周卓明, “壓電力學,” 全華科技圖書股份有限公司出版, 2003/11 [35] Takuro Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, 2005 [36] D.A. Berlincourt, D. R. Curran, F. Patat, “Piezoelectric and piezomagnetic materials and their function as transducers,” in Physical Acoustic, W. P. Mason Ed., 1A, Academic Press, New York, 1964 [37] R. Bechmann, “Elastic and Piezoelectric Constants of Alpha- Quartz,” Physical Review, Vol. 110, pp.1060-1061, 1958 [38] Jiashi Yang, Analysis of Piezoelectric Devices, World Scientific, 2006 [39] R.E. Newnham, Properties of materials , Oxford University Press, pp.91-92, 2005 [40] H.F. Weinberger, Partial Differential Equations with Complex Variables and Transform Method, pp.70-75, 1970 [41] H.F. Tiersten, Linear Piezoelectric Plate Vibration, 1969 [42] K.D. Wolf, “Electromechanical energy conversion in asymmetric piezoelectric bending actuators,” Ph.D. thesis, Technische Universita¨t Darmstadt, Germany, 2000 [43] ANSYS document, 2.16. Example: Piezoelectric Analysis with Coriolis Effect [44] Eringen, A. C., Mechanics of Continua, pp.142, 1967 [45] Raymond D. Mindlin, “Forced Thickness-Shear and Flexural Vibrations of Piezoelectric Crystal Plates,” Journal of Applied Physics, Vol.23, No.1, pp.83-88, Jan. 1952 [46] C.H. Weng, “Etching-behavior Study of Tuning Fork Quartz Resonator,” Master Thesis, Institute of Applied Mechanics, College of Engineering, National Taiwan University, 2011 [47] 謝發華, private communication, 中山科學研究院, 2011 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36784 | - |
| dc.description.abstract | 本文主要研究對象為(ZYw)+2°雙端固定音叉式石英振盪器,分析壓電效應對於共振頻率的影響,以及外加電極排列與石英壓電樑運動型態之關係。本文針對異相振盪行為進行分析,中央音叉樑視為尤拉樑,兩端質量塊則依據音叉樑異相振盪對質量塊所造成的力矩來建立翹曲形變的模型;再利用組成律與模擬結果對極化電位進行三角函數的假設,並以自由振盪方式求得共振頻率。耦合部分,假設其結構為彈性體,分別討論各自結構自由振動行為,再利用漢米頓定理推導出運動統御方程式及邊界條件,用以耦合機械與電性質之連續關係;並討論振動模態振形與極化電場分佈形態,以此作為激發共振器特定模態電極設計之依據。
為瞭解製程誤差對於共振頻率影響程度,分別以石英理想截面與濕蝕刻實驗截面進行討論,並分析尺寸對於共振頻率之敏感度,以作為製程誤差分析及光罩設計之參考,於頻率準確度與製程難度中取得平衡,以達到良率提升之目的。 | zh_TW |
| dc.description.abstract | The thesis mainly studied about double-ended tuning fork quartz resonator, the impact of the piezoelectric effect on a natural frequency, and the movement pattern of the relationship between an electrode arrangement and a quartz piezoelectric beam. Focusing on the analysis of the anti-phase mode, the study regards a central tuning fork as the Euler beam, and two ends of the proof masses built the warping model according to the moment caused by the anti-phase mode from the tuning fork to the proof masses; then using the constitutive law and the simulation result to make trigonometric assumption to the polarized electric potential, and obtaining the piezoelectric effect by the way of the free vibration. Assuming the coupling structure as an elastic body, and discussing the free vibration to each structure; using the Hamilton's principle to derive the governing equation and the boundary condition for coupling the continuous relationship between the mechanics and the electrical properties. The mode shape of the vibration and the distribution patterns of the polarized electric field are used to be the design basis of exciting the specific electrode of the resonator.
For understanding the impact of the process error to the resonant frequency, the study discusses the ideal cross-section of the quartz and the wet etching cross-section respectively; furthermore, the study has analyzed the impact of the dimension to the sensitivity of the resonant frequency for being the references of the process error analysis and the design of the mask; in order to improve the yield, it must get the balance between the frequency accuracy and the difficulty during the process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:15:48Z (GMT). No. of bitstreams: 1 ntu-100-R98543019-1.pdf: 4309097 bytes, checksum: 2ae18a35e930daf372d35f7d28bcf4ff (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書…………………………………………………………………………i
致謝……………………………………………………………………………………...ii 中文摘要……………………………………………………………………………......iii 英文摘要………………………………………………………………………………..iv 目錄……………………………………………………………………………………..vi 圖目錄……………………………………………………………………………….... .ix 表目錄………………………………………………………………………………....xiv 符號說明……………………………………………………………………………...xvii 第一章 導論...……………………………………………………………...………… 1 1.1 前言…………………………………………………………………………...1 1.2 加速規原理…………………………………………………………………...2 1.3 文獻回顧……………………………………………………………………...3 1.4 研究目的與各章節摘要……………………………………………………...9 第二章 石英晶體特性………………………………………………...……………..11 2.1 晶格對稱性……………………………………………………………….....11 2.2 石英晶體結構…………………………………………………………...…..12 2.3 切角特性…………………………………………………………...…..……13 2.4 壓電效應………………………………………………………………..…...16 2.5 石英材料參數…………………………………………………………….....18 第三章 石英樑外加電極排列分析…….……………………...………………..…...23 3.1 二維尺度:對稱電壓之均佈電極貼於石英樑四面.......……………..…….24 3.2 一維尺度:反相電壓之均佈電極於石英樑寬度方向………...…………...30 3.3 一維尺度:同相電壓之均佈電極於石英樑寬度方向…….......…………...33 第四章 音叉單樑分析……………………………………………………………….35 4.1 理想截面矩形之尤拉樑……………………...……………………..………35 4.1.1 漢米頓定理………………………...……………………...………...35 4.1.2 模型假設與座標定義……..…...........................................................36 4.1.3 變形假設…………………………………………………………….36 4.1.4 自由振盪電位假設………………………………………………….38 4.1.5 理想矩形截面尤拉樑之動能……………………...………………..45 4.1.6 理想矩形截面尤拉樑之電焓…………………….……………..…..46 4.1.7 理想矩形截面尤拉樑之統御方程式…………………….…………49 4.1.8 理想矩形截面尤拉樑模態振形與電場分析……………………….53 4.2 非理想截面之尤拉樑……………...…………………………………..……58 4.2.1 變形假設………………………………………………………….....58 4.2.2 非理想截面尤拉樑之動能…….……………………………..……..60 4.2.3 非理想截面尤拉樑之電焓.…………………………………..……..60 4.2.4 非理想截面尤拉樑之統御方程式………………………..…..…….60 第五章 異相振盪之雙端固定音叉式石英振盪器………………………………….63 5.1 異相振盪之質量塊分析………………………………………………….....63 5.1.1 質量塊變形假設………………………………………………..…...63 5.1.2 質量塊自由振盪電位假設………………………………………….65 5.1.3 質量塊之動能………………………………………………..……...71 5.1.4 質量塊之電焓…………………………………………………..…...71 5.1.5 質量塊之統御方程式…………………………………………….....75 5.2 異相振盪之DETF石英振盪器分析………………………………………...79 5.2.1 DETF石英振盪器邊界耦合…………………………....…………...80 5.2.2 DETF石英振盪器共振頻率分析…………………………………...84 5.2.3 DETF石英振盪器之壓電效應……………………………………...86 5.2.4 DETF石英振盪器模態振形與電場分析…………………………...88 5.2.5 理想截面之尺度效應與敏感度分析…………………………...…..90 5.2.6 非理想截面之尺度效應與敏感度分析…………………………...100 第六章 結論………………………………………………………………...………108 參考文獻…………………………………………………………………….………..110 附錄A…………………………………………………………………………………115 附錄B…………………………………………………………………………………116 附錄C…………………………………………………………………………………117 附錄D…………………………………………………………………………………118 附錄E…………………………………………………………………………………120 附錄F……………………………………………………………………………….…122 附錄G…………………………………………………………………………………124 附錄H…………………………………………………………………………………125 附錄I………………………………………………………………………………….132 作者簡歷……………………………………………………………………………...139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 音叉振盪器 | zh_TW |
| dc.subject | 壓電效應 | zh_TW |
| dc.subject | 漢米頓定理 | zh_TW |
| dc.subject | 共振頻率 | zh_TW |
| dc.subject | 電極排列 | zh_TW |
| dc.subject | electrode arrangement | en |
| dc.subject | piezoelectric effect | en |
| dc.subject | natural frequency | en |
| dc.subject | tuning fork resonator | en |
| dc.title | 雙端固定壓電石英音叉樑振盪器之自然頻率分析 | zh_TW |
| dc.title | Natural Frequency Analysis of Double-Ended Tuning Fork Piezoelectric-Quartz Resonator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張簡文添(Wen-Tian Chang Chien) | |
| dc.contributor.oralexamcommittee | 謝發華(Fa-Hwa Shieh),陳柏志(Po-Chih Chen) | |
| dc.subject.keyword | 音叉振盪器,壓電效應,共振頻率,電極排列,漢米頓定理, | zh_TW |
| dc.subject.keyword | tuning fork resonator,piezoelectric effect,natural frequency,electrode arrangement, | en |
| dc.relation.page | 139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
