Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36762Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張煥宗(Huan-Tsung Chang) | |
| dc.contributor.author | Chia-ying Chen | en |
| dc.contributor.author | 陳家瑩 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:14:43Z | - |
| dc.date.available | 2016-08-18 | |
| dc.date.copyright | 2011-08-18 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-20 | |
| dc.identifier.citation | [1] 張品全 科學發展, 2002, 493, 23-29.
[2] Gratzel, M. Nature 2000, 403, 363-363. [3] Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525-532. [4] 蔡進譯 物理雙月刊, 2005, 27, 701-719. [5] Gedanken A. Ultrason. Sonochem. 2004, 11, 47-55. [6] Mane, R. S.; Lokhande, C. D. Mater. Chem. Phys. 2000, 65, 1-31. [7] Lewis, A. E. Hydrometallurgy 2010, 104, 222-234. [8] Shen, G.; Chen, D.; Tang, K.; Liu, X.; Huang, L.; Qian, Y. J. Solid State Chem. 2003, 173, 232-235. [9] Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M. W. Nature 1991, 353, 414-416. [10] Mukaibo, H.; Yoshizawa, A.; Momma, T.; Osaka, T. J. Power Sources 2003, 119, 60-63. [11] Wang, G. Z.; Geng, B. Y.; Huang, X. M.; Wang, Y. W.; Li, G. H.; Zhang, L. D. Appl. Phys. A-Mater. Sci. Process 2003, 77, 933-936. [12] Li, Q.; Ding, Y.; Shao, M. W.; Wu, J.; Yu, G. H.; Qian, Y. T. Mater. Res. Bull. 2003, 38, 539-543. [13] Gedanken A. Ultrason. Sonochem. 2004, 11, 47-55. [14] Spanel, L.; Haase, M.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 5649-5655. [15] Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402-403. [16] O'regan, B.; Gratzel, M. Nature 1991, 353, 737-740. [17] Liu, D.; Kamat, P. V. J. Electroanal. Chem. 1993, 347, 451-456. [18] Gerischer, H.; Luebke, M. J Electromul. Chem. 1986, 204, 225-227. [19] Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385-2393. [20] Gorer, S.; Hodes, G. J. Phys. Chem. 1994, 98, 5338-5346. [21] Nasr, C.; Hotchandani, S.; Kim, W. Y.; Schmehl, R. H.; Kamat, P. V. J. Phys. Chem. B 1997, 101, 7480-7487. [22] Nasr, C.; Kamat, P. V.; Hotchandani, S. J. Electroanal. Chem. 1997, 420, 201-207. [23] Shen, Q.; Yanai, M.; Katayama, K.; Sawada, T.; Toyoda, T. Chem. Phys. Lett. 2007, 442, 89-96. [24] Hotchandani, S.; Kamat, P. V. J. Phys. Chem. 1992, 96, 6834-6839. [25] Hotchandani, S.; Kamat, P. V. Chem. Phys. Lett. 1992, 191, 320-326. [26] Lopez-Luke, T.; Wolcott, A.; Xu, L.; Chen, S.; Wen, Z.; Li, J.; De La Rosa, E.; Zhang, J. Z. J. Phys. Chem. C 2008, 112, 1282-1292. [27] Nozik, A. Physica E 2002, 14, 115-120. [28] Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M.; Bach, U. J. Phys. Chem. B 2002, 106, 7578-7580. [29] Wang, Z. J. Phys. Chem. B 2000, 104, 1153-1175. [30] Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462. [31] Gross, D.; Susha, A. S.; Klar, T. A.; Da Como, E.; Rogach, A. L.; Feldmann, J. Nano Lett. 2008, 8, 1482-1485. [32] Granot, E.; Patolsky, F.; Willner, I. J. Phys. Chem. B 2004, 108, 5875-5881. [33] Lawless, D.; Kapoor, S.; Meisel, D. J. Phys. Chem. 1995, 99, 10329-10335. [34] Islam, M. A.; Herman, I. P. Appl. Phys. Lett. 2002, 80, 3823-3825. [35] Islam, M. A.; Xia, Y.; Steigerwald, M. L.; Yin, M.; Liu, Z.; O'Brien, S.; Levicky, R.; Herman, I. P. Nano Lett. 2003, 3, 1603-1606. [36] Brown, P.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 8890-8891. [37] Lee, Y. L.; Huang, B. M.; Chien, H. T. Chem. Mater. 2008, 20, 6903-6905. [38] Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737-18753. [39] Ruhle, S.; Shalom, M.; Zaban, A. Chem. Phys. Chem. 2010, 11, 2290-2304. [40] Hotchandani, S.; Kamat, P. V. J. Phys. Chem. 1992, 96, 6834-6839. [41] Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183-3188. [42] Niitsoo, O.; Sarkar, S. K.; Pejoux, C.; Ruhle, S.; Cahen, D.; Hodes, G. J. Photochem, Photobio. A 2006, 181, 306-313. [43] Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604-609. [44] Lee, H.; Leventis, H. C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nuesch, F.; Geiger T.; Zakeeruddin, S. M.; Gratzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735-2742. [45] Tubtimtae, A.; Wu, K.-L.; Tung, H.-Y.; Lee, M.-W.; Wang, G. J. Electrochem. Comm. 2010, 12, 1158-1160. [46] Fu, H.; Tsang, S.-W.; Zhang, Y.; Quyang, J.; Lu, J.; Yu, K.; Tao, Y. Chem. Mater. 2011, 23, 1805-1810. [47] Hodes, G.; Manassen, J.; Cahen, D. J. Electrochem. Soc. 1980, 127, 544-549. [48] Yang, Z.; Chen, C.-Y.; Liu, C.-W.; Chang, H.-T. Chem. Commun. 2010, 46, 5485-5487. [49] Shen, Q.; Yamada, A.; Tamura, S.; Toyoda, T. Appl. Phys. Lett. 2010, 97, 123107. [50] Deng, M.; Huamg, S.; Zhang, Q.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Chem. Lett. 2010, 39, 1168-1170. [51] Gonzalez-Padro, V.; Xu, X.; Mora-Sero, I.; Bisquert, J. ACS Nano 2010, 4, 5783-5790. [52] Huang, X.; Huang, S.; Zhang, Q.; Guo, X.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Chem. Comm. 2011, 47, 2664-2666. [53] Pandolfo, A.; Hollenkamp, A. J. Power Sources 2006, 157, 11-27. [54] 陳元杰, 廖秋峰 工業材料, 2001, 178,100-106. [55] Conway, B. J. Electrochem. Soc. 1991, 138, 1539-1548. [56] Ardizzone, S.; Fregonara, G.; Trasatti, S. Electrochim. Acta 1990, 35, 263-267. [57] Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483-2498. [58] Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. Appl. Phys.Lett. 1997, 70, 1480-1482. [59] Sugimoto, W.; Iwata, H.; Yasunaga, Y.; Murakami, Y.; Takasu, Y. Angew. Chem. Int. Ed. 2003, 42, 4092-4096. [60] Cheng, J.; Cao, G. P.; Yang, Y. S. J. Power Sources 2006, 159, 734-741. [61] Nam, K. W.; Kim, K. H.; Lee, E. S.; Yoon, W. S.; Yang, X. Q.; Kim, K. B. J. Power Sources 2008, 182, 642-652. [62] Tao, F.; Zhao Y.-Q.; Zhang G.-Q.; Li H.-L. Electrochem. Comm. 2007, 9, 1282-1287. [63] Bao, S.-J.; Li, C. M.; Guo, C.-X.; Qiao, Y. J. Power Sources 2008, 180, 676-681. [64] Justin, P.; Rao, G. R. Int. J. Hydrogen Energy 2010, 35, 9709-9715. [65] Liu, B.; Wei, S.; Xing, Y.; Liu, D.; Shi, Z.; Liu, X.; Sun, X.; Hou, S.; Su, Z. Chem. Eur. J. 2010, 16, 6625-6631. [66] Stević, Z.; Rajčić-Vujasinović, M. J. Power Sources 2006, 160, 1511-1517. [67] Abuthahor, K. A. Z. S.; Jagannathan, R. Mater. Chem. Phys. 2010, 121, 184-192. [68] Zheng, J.; Jow, T. J. Electrochem. Soc. 1995, 142, L6-L8. [69] Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269-277. [70] Mora-Sero, I.; Gimenez, S.; Fabregat-Sańtiago, F.; Gomez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Acc. Chem. Res. 2009, 42, 1848-1857. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36762 | - |
| dc.description.abstract | 本研究論文中,將所合成的金屬硫化物奈米材料應用於量子點敏化太陽能電池之對電極(counter electrode)及超級電容上。在量子點敏化太陽能電池部分,實驗中以硝酸銅(Cu(NO3)2)及硫化鈉(Na2S)作為起始物,利用化學浸泡沉積法(chemical bath deposition, CBD)合成CuS奈米粒子薄膜,並同時修飾於FTO導電玻璃表面,且當CBD循環數為1、5、7及15時,可分別製備出粒子、粒子堆、緞帶及帶狀之奈米材料。除此之外,研究中利用UV-Vis吸收光譜及SEM加以探討CuS薄膜表面構形之變化,另以線性掃瞄伏安法、電化學阻抗分析及反射度等方式可證明經CBD循環製成之CuS電極,具有高電催化活性、高反射度及低的電荷轉移電阻。由上述之CuS電極做為CdS/CdZnSe量子點敏化太陽能電池之對電極時,於一個太陽光強度(100 mW cm-2)照射下量測其光電轉換效率,由結果顯示,經過7次CBD循環製成之CuS電極為對電極時,所組成之量子點敏化太陽能電池具最大轉換效率可達4.71 ± 0.09 %。本研究結果證明,以CuS材料與常用之鉑奈米粒子之電極比較,其具低成本、高電催化活性、高反射度、低電荷轉移電阻、對polysulfide電解液之較佳容忍度及不易被毒化等優點。於超級電容部分,將CNT/CoS奈米材料(nanomaterials, NMs)滴於FTO導電玻璃上,作為超級電容中之工作電極(working electrode),經由高溫鍛燒處理後,分別以Raman、XPS及晶格間距量測,由結果可知,鍛燒後CNTs/CoS NMs之晶形會改變。除此之外,依據循環伏安法之測量結果,鍛燒後之CNTs/CoS NMs電極較鍛燒前之工作電極具有較大之電化學電容性,於100及10 mV s-1之掃描速率下分別可得1000及2000 F g-1以上之電容值。就我們所知,此為首次利用簡易單次鍛燒法即可製備出具高速且高效率之CNTs/CoS電容材料,並同時可大幅增加奈米材料之電容值。 | zh_TW |
| dc.description.abstract | In this thesis, I synthesized nanomaterials for fabrication of counter electrodes of quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). Through a chemical bath deposition (CBD), Cu(NO3)2 and Na2S were used for the preparation of highly efficient CuS electrodes on transparent fluorine-doped tin oxide glass substrates. Varying the number of CBD cycles allowed us to obtain different types of CuS structures—namely particles, aggregates, ribbon-like structures, and belt-like structures after one, five, seven, and 15 CBD cycles, respectively. I used UV–Vis absorption spectroscopy and scanning electron microscopy to monitor the structural evolution of these CuS structures. Current–potential, electrochemical impedance, and reflectance measurements revealed that the CuS electrodes prepared after seven CBD cycles exhibited high electrocatalytic activity, high reflectivity, and low charge-transfer resistance. Under one-sun illumination (100 mW cm–2), five CdS/CdZnSe quantum dot–sensitized solar cells (QDSSCs) each featuring a CuS electrode prepared from seven CBD cycles provided maximum power conversion efficiencies of 4.71 ± 0.09%. Relative to Pt electrodes, these low-cost CuS electrodes exhibit great electrocatalytic activities, high reflectivity, low charge-transfer resistance, and excellent tolerance toward poisoning in the presence of polysulfide electrolytes. I also prepared carbon nanotubes (CNTs)/CoS nanomaterials (NMs) electrodes by depositing CNTs/CoS NMs onto fluorine-doped tin oxide glass substrates, which function as working electrodes in supercapacitors (SCs). Thermal annealing of CNTs/CoS NMs leads to the crystalline structure evolution. Evidences are supported by the measurements of Raman spectra, X-ray photoelectron spectroscopy and d-spacing. Cyclic voltammograms analysis revealed thermal oxidizing CNTs/CoS NMs electrodes exhibiting excellent electrochemical capacity than that of unannealing CNTs/CoS NMs electrodes. The values of specific capacitance over 1000 and 2000 Fg-1 were obtained at a scan rate of 100 and 10 mV s-1, respectively. To our best knowledge, it is, for the first time, demonstrated the use of annealing CNTs/CoS NMs as great promising high-rate and high efficient SCs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:14:43Z (GMT). No. of bitstreams: 1 ntu-100-R98223129-1.pdf: 3898233 bytes, checksum: 7d58c6f90c1a329cf14e66db8e507ee3 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 謝誌………………………………………………………………………………………………………………I
中文摘要……………………………………………………………………………………………………IV 英文摘要………………………………………………………………………………………………………V 目錄…………………………………………………………………………………………………………VII 圖目錄…………………………………………………………………………………………………………X 表目錄………………………………………………………………………………………………………XI 著作發表…………………………………………………………………………………………………XII 第一章 緒論………………………………………………………………………………………………1 1.1 前言…………………………………………………………………………………………1 1.2 金屬硫化物奈米材料……………………………………………………………3 1.2.1 金屬硫化物特性與應用………………………………………………………3 1.2.2 金屬硫化物合成方法……………………………………………………………3 1.3 量子點敏化太陽能電池部分………………………………………………………6 1.3.1 量子點敏化太陽能電池簡介………………………………………………………6 1.3.2 量子點敏化太陽能電池原理………………………………………………………7 1.3.3 金屬硫化物於量子點敏化太陽能電池之應用………………………11 1.4 超級電容部分………………………………………………………………………………14 1.4.1 超級電容簡介………………………………………………………………………………14 1.4.2 超級電容原理………………………………………………………………………………15 1.4.3 金屬硫化物於超級電容之應用………………………………………………17 1.5 研究動機………………………………………………………………………………………19 1.5.1 金屬硫化物於量子點敏化太陽能電池之應用………………………19 1.5.2 金屬硫化物於超級電容之應用………………………………………………19 1.6 參考文獻………………………………………………………………………………………20 第二章 量子點敏化太陽能電池…………………………………………………………………31 2.1 前言………………………………………………………………………………………………31 2.2 實驗部分………………………………………………………………………………………32 2.2.1 藥品………………………………………………………………………………………………32 2.2.2 量子點敏化太陽能電池製備……………………………………………………33 2.2.3 量測電化學活性…………………………………………………………………………35 2.2.4 量測電荷轉移電阻……………………………………………………………………36 2.2.5 儀器………………………………………………………………………………………………36 2.3 結果與討論…………………………………………………………………………………37 2.3.1 CuS奈米結構的成長探討…………………………………………………………37 2.3.2 CuS電極特性………………………………………………………………………………38 2.3.3 量子點敏化太陽能電池之應用…………………………………………………40 2.4 結論………………………………………………………………………………………………42 2.5 參考文獻………………………………………………………………………………………43 第三章、以CNTs/CoS製成高速及高效率之超級電容…………………………53 3.1 前言………………………………………………………………………………………………53 3.2 實驗部分………………………………………………………………………………………54 3.2.1 實驗藥品………………………………………………………………………………………54 3.2.2 製備CNTs/CoS奈米材料…………………………………………………………54 3.2.3 製作CNTs/CoS奈米材料電極…………………………………………………54 3.2.4 儀器………………………………………………………………………………………………55 3.2.5 測量方法………………………………………………………………………………………55 3.3 結果與討論……………………………………………………………………………………55 3.3.1 CNTs/CoS奈米材料鍛燒前後結構探討…………………………………55 3.3.2 CNTs/CoS之電容特性………………………………………………………………56 3.3.3 高電容……………………………………………………………………………………………58 3.4 結論………………………………………………………………………………………………58 3.5 參考資料………………………………………………………………………………………59 第四章 總結論及未來展望…………………………………………………………………………70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超級電容 | zh_TW |
| dc.subject | 量子點敏化太陽能電池 | zh_TW |
| dc.subject | 金屬硫化物 | zh_TW |
| dc.subject | 奈米材料 | zh_TW |
| dc.subject | electrocatalytic activity | en |
| dc.subject | reflectance | en |
| dc.subject | nanomaterials | en |
| dc.subject | CuS nanostructures | en |
| dc.subject | carbon nanotubes | en |
| dc.subject | charge-transfer resistance | en |
| dc.subject | cobalt sulfide | en |
| dc.subject | supercapacitor | en |
| dc.subject | quantum dot–sensitized solar cells | en |
| dc.title | 金屬硫化物於量子點敏化太陽能電池與超級電容之應用 | zh_TW |
| dc.title | Metal Sulfide for Quantum Dot-Sensitized Solar Cells and Supercapacitors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王忠茂(Chong-Mou Wang),陳良益(Liang-Yih Chen) | |
| dc.subject.keyword | 金屬硫化物,奈米材料,超級電容,量子點敏化太陽能電池, | zh_TW |
| dc.subject.keyword | CuS nanostructures,charge-transfer resistance,reflectance,electrocatalytic activity,quantum dot–sensitized solar cells,supercapacitor,cobalt sulfide,nanomaterials,carbon nanotubes, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 3.81 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
