請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36755完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 尹相姝 | |
| dc.contributor.author | xiang-Lin Pu | en |
| dc.contributor.author | 蒲相霖 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:14:23Z | - |
| dc.date.available | 2005-08-02 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-20 | |
| dc.identifier.citation | Barthel F, Kienlen Campard P, Demeneix BA, Feltz P,
Loeffler JP. GABABreceptors negatively regulate transcription in cerebellar granular neurons through cyclic AMP responsive element binding protein-dependent mechanisms. Neuroscience. 1996 Jan;70(2):417-27. Bartoletti M, Gubellini C, Ricci F, Gaiardi M. The GABAB agonist baclofen blocks the expression of sensitisation to the locomotor stimulant effect of amphetamine. Behav Pharmacol. 2004 Sep;15(5-6):397-401. Billinton A, Upton N, Bowery NG. GABA(B) receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum. Br J Pharmacol. 1999 Mar;126(6):1387-92. Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature.1980 Jan 3;283(5742):92-4 Bowery NG, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987 Feb;20(2):365-83 Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav. 1990 Mar;35(3):497-501. Brebner K, Ahn S, Phillips AG. Attenuation of d-amphetamine self-administration by baclofen in the rat: behavioral and neurochemical correlates. Psychopharmacology (Berl). 2005 Feb;177(4):409-17. Brodde OE, Daul A, Michel-Reher M, Boomsma F, Man in 't Veld AJ, Schlieper P, Michel MC. Agonist-induced desensitization of beta-adrenoceptor function in humans. Subtype-selective reduction in beta 1- or beta 2- adrenoceptor-mediated physiological effects by xamoterol or procaterol. Circulation. 1990 Mar;81(3):914-21. Camp DM, DeJonghe DK, Robinson TE. Time-dependent effects of repeated amphetamine treatment on norepinephrine in the hypothalamus and hippocampus assessed with in vivo microdialysis. Neuropsychopharmacology. 1997 Sep;17(3):130- 40. Carter RJ, Morton AJ, Dunnett SB, in Current Protocols in Neuroscience., J. N. Crawley et al., Eds. (New York, Wiley, 2001). Chebib M, Johnston GA. The 'ABC' of GABA receptors: a brief review. Clin Exp Pharmacol Physiol. 1999 Nov;26(11):937- 40. Review. Choe ES, Wang JQ. CaMKII regulates amphetamine-induced ERK1/2 phosphorylation in striatal neurons. Neuroreport. 2002 Jun 12;13(8):1013-6. Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 7th Ed. Oxford Univ. Press. 1996, New york Crisostomo EA, Duncan PW, Propst M, Dawson DV, Davis JN. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol. 1988 Jan;23(1):94-7. Ellison G.Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula.Brain Res Brain Res Rev. 1994 May;19(2):223-39. Review. Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci. 1994 Mar;14(3 Pt 2):1834-55. Feeney DM, Sutton RL. Pharmacotherapy for recovery of function after brain injury. Crit Rev Neurobiol. 1987;3 (2):135-97. Review. Fox GB, Curzon P, Decker MW, in Methods of Behavioral Analysis in Neuroscience, J. Buccafusco, Ed. (Humana, Totowa, N.J., 2001). Goldstein LB, Davis JN. Influence of lesion size and location on amphetamine-facilitated recovery of beam- walking in rats. Behav Neurosci. 1990a Apr;104(2):320-7. Goldstein LB, Davis JN. Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury. J Neurosci Methods. 1990b Feb;31 (2):101-7. Hurwitz BE, Dietrich WD, McCabe PM, Alonso O, Watson BD, Ginsberg MD, Schneiderman N. Amphetamine promotes recovery from sensory-motor integration deficit after thrombotic infarction of the primary somatosensory rat cortex. Stroke. 1991 May;22(5):648-54. Ito Y, Ishige K, Zaitsu E, Anzai K, Fukuda H. gamma- Hydroxybutyric acid increases intracellular Ca2+ concentration and nuclear cyclic AMP-responsive element- and activator protein 1 DNA-binding activities through GABAB receptor in cultured cerebellar granule cells. J Neurochem. 1995 Jul;65(1):75-83. Karbon EW, Enna SJ. Characterization of the relationship between gamma-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol Pharmacol. 1985 Jan;27(1):53-9. Kawahara Y, Kawahara H, Westerink BH. Tonic regulation of the activity of noradrenergic neurons in the locus coeruleus of the conscious rat studied by dual-probe microdialysis. Brain Res. 1999 Mar 27;823(1-2):42-8. Konradi C, Cole RL, Heckers S, Hyman SE. Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci. 1994 Sep;14(9):5623- 34. Knight AR, Bowery NG. The pharmacology of adenylyl cyclase modulation by GABAB receptors in rat brain slices. Neuropharmacology. 1996 Jun;35(6):703-12. Lee YW, Son KW, Flora G, Hennig B, Nath A, Toborek M. Methamphetamine activates DNA binding of specific redox- responsive transcription factors in mouse brain. J Neurosci Res. 2002 Oct 1;70(1):82-9. Lonze BE, Ginty DD.Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002 Aug 15;35(4):605-23. Review. Mann-Metzer P, Yarom Y.Pre- and postsynaptic inhibition mediated by GABA(B) receptors in cerebellar inhibitory interneurons. J Neurophysiol. 2002 Jan;87(1):183-90. McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci. 2003 Nov;6(11):1208-15. Nelson TE, King JS, Bishop GA. Distribution of tyrosine hydroxylase-immunoreactive afferents to the cerebellum differs between species. J Comp Neurol. 1997 Mar 17;379 (3):443-54. Nitsch C, Riesenberg R. Synaptic reorganisation in the rat striatum after dopaminergic deafferentation: an ultrastructural study using glutamate decarboxylase immunocytochemistry. Synapse. 1995 Apr;19(4):247-63. Parfitt KD, Hoffer BJ, Bickford-Wimer PC. Potentiation of gamma-aminobutyric acid-mediated inhibition by isoproterenol in the cerebellar cortex: receptor specificity. Neuropharmacology. 1990 Oct;29(10):909-16. Phillis BD, Ong J, White JM, Bonnielle C. Modification of d- amphetamine-induced responses by baclofen in rats. Psychopharmacology (Berl). 2001 Jan;153(3):277-84. Ranaldi R, Poeggel K. Baclofen decreases methamphetamine self-administration in rats. Neuroreport. 2002 Jul 2;13 (9):1107-10. Snead OC 3rd. Evidence for a G protein-coupled gamma- hydroxybutyric acid receptor. J Neurochem. 2000 Nov;75 (5):1986-96. Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U. A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res. 1987 Jan 20;401(2):322-30. Shefner SA, Osmanovic SS. GABAA and GABAB receptors and the ionic mechanisms mediating their effects on locus coeruleus neurons. Prog Brain Res. 1991;88:187-95. Review. Strazielle C, Lalonde R, Hebert C, Reader TA. Regional brain distribution of noradrenaline uptake sites, and of alpha1-alpha2- and beta-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study. Neuroscience. 1999;94(1):287-304. Stroemer RP, Kent TA, Hulsebosch CE. Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke. 1998 Nov;29(11):2381-93; discussion 2393-5. Simpson JN, Wang JQ, McGinty JF. Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element-binding protein and Fos-related antigen immunoreactivity in rat striatum. Neuroscience. 1995 Nov;69(2):441-57. Taniyama K, Niwa M, Kataoka Y, Yamashita K. Activation of protein kinase C suppresses the gamma-aminobutyric acidB receptor-mediated inhibition of the vesicular release of noradrenaline and acetylcholine. J Neurochem. 1992 Apr;58 (4):1239-45. Than M, Szabo B.Analysis of the function of GABA(B) receptors on inhibitory afferent neurons of Purkinje cells in the cerebellar cortex of the rat. Eur J Neurosci. 2002 May;15(10):1575-84. Vigot R, Batini C. GABA(B) receptor activation of Purkinje cells in cerebellar slices. Neurosci Res. 1997 Oct;29 (2):151-60. Walker-Batson D, Curtis S, Natarajan R, Ford J, Dronkers N, Salmeron E, Lai J, Unwin DH. A double-blind, placebo- controlled study of the use of amphetamine in the treatment of aphasia. Stroke. 2001 Sep;32(9):2093-8. Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke. 1995 Dec;26(12):2254-9. White FJ, Kalivas PW. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 1998 Jun-Jul;51(1-2):141-53. Review. Xiao RP, Lakatta EG.Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells.Circ Res. 1993 Aug;73(2):286-300. Yeh HH, Moises HC, Waterhouse BD, Woodward DJ. Modulatory interactions between norepinephrine and taurine, beta- alanine, gamma-aminobutyric acid and muscimol, applied iontophoretically to cerebellar Purkinje cells. Neuropharmacology. 1981 Jun;20(6):549-60. Yeh HH, Woodward DJ. Beta-1 adrenergic receptors mediate noradrenergic facilitation of Purkinje cell responses to gamma-aminobutyric acid in cerebellum of rat. Neuropharmacology. 1983 May;22(5):629-39. Yin HS, Chen CT, Lin TY. Age- and region-dependent alterations in the GABAergic innervation in the brain of rats treated with amphetamine. Int J Neuropsychopharmacol. 2004 Mar;7(1):35-48. Zhou W, Mailloux AW, Jung BJ, Edmunds HS Jr, McGinty JF. GABAB receptor stimulation decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum. Brain Res. 2004 Apr 9;1004(1- 2):18-2 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36755 | - |
| dc.description.abstract | 安非他命是一種強效的中樞神經興奮劑,它被認為是胺類(amine)神經傳導物質的間接促效劑,會造成兒茶酚胺(catecholamine)與血清張力素(serotonin, 5-hydroxytryptamine or 5HT)的過度釋放。以單劑安非它命處理動物,可使動物活動量增加並引起重複性刻板性行為(stereotypy);長期處理,則會使動物對此藥物產生依賴、成癮與活動異常等行為改變。目前已知大腦許多腦區均受到安非他命影響,但在運動系統功能方面主司動作平衡與運動協調的小腦,受此藥物影響的情況則尚待探討。
已知小腦與兒茶酚胺類神經傳導物質的關係,是小腦會接受來自於藍班核(locus coeruleus, LC)的正腎上腺素的支配。cAMP反應單元結合蛋白質(CREB)是一種中樞神經系統常見轉錄因子,給予一劑或是長期注射安非它命會引起許多大腦腦區磷酸化CREB(pCREB)的改變,但安非它命注射是否會改變小腦神經元pCREB的表現則未知。 迦瑪胺基丁酸(GABA)系統是中樞神經系統主要的抑制性神經傳導系統,其B接受器(GABAB receptor)的一種專一性促效劑(agonist),貝克洛芬(baclofen),會減輕許多安非它命所引起,包括生理、行為與一些腦區神經化學層面的變化,但其作用機制及在小腦是否也有同樣的反應則仍未確立。本研究的目的,就是在探討並比較在長期安非它命或/及貝克洛芬的處理下,成熟小鼠小腦中,兒茶酚胺纖維(含tyrosine hydroxylase,TH; dopamine ß-hydroxylase,DBH)及pCREB的改變,以及對小腦平衡功能的影響。 我們取出生後7至9周的雄性SV-129小鼠,分成四組,經腹腔分別注射5mg/kg安非它命、10mg/kg貝克洛芬、5mg/kg安非它命與10mg/kg貝克洛芬或生理食鹽水溶液,每天兩次注射(上午九點、下午五點),連續三天,於第四天給予第七次注射,四至五個小時後灌流犧牲,以Bouin’s固定,解剖取出腦部,製備成冠狀石蠟切片(7µm)。分別以抗TH、抗DBH、抗CREB及抗pCREB抗體進行免疫組織化學染色,觀察小腦皮質及藍斑核染色及變化,並以影像分析系統加以量化。另外,利用beam walking test來觀察平衡功能的表現,此測驗藉由觀察實驗小鼠通過離地50cm、直徑圓形12mm木條的速率,來評估平衡與運動協調功能。在動物進行藥物處理前三天,給予每天每隻實驗小鼠訓練三次完整通過木條;在藥物給予期間,記錄每天第一次注射後不同時間點通過木條速率來觀察其平衡與協調功能的表現。 TH、DBH免疫反應為點狀構造,在藍班核、Purkinje層的細胞本體和周圍、molecular及granule層散漫分布;經長期注射安非他命後發現,與生理食鹽水組(對照組)比較,在小腦Purkinje與granule層的TH染色程度降低,但DBH染色程度增加。將貝克洛芬組與對照組比較,則可看到藍斑核、小腦的Purkinje與granule層的TH染色明顯降低,而DBH的染色僅在藍斑核部分出現降低情形。在同時給予貝克洛芬與安非他命的組別,小腦Purkinje層的TH及DBH染色則與對照組無明顯差別,但藍斑核的TH染色程度卻明顯比對照組或安非他命組增加。CREB與pCREB的免疫染色位在細胞核中,但Purkinje細胞核中均未見兩者的染色。小腦granule層中,pCREB的表現,在安非他命、貝克洛芬組及安非他命與貝克洛芬組均比對照組上升。 平衡功能的測試結果發現,安非他命組在注射後30分鐘,通過木條速率明顯增加,而隨著注射天數增加,其高速率期間也會延長;在貝克洛芬與安非他命組方面,速率介於對照組與安非他命組之間。至於單獨注射貝克洛芬組隨著注射天數增加其速率會降低到完全在木條上靜止不動。一般而言,藥物對通過速率影響約在兩個小時,之後與對照組相同。 上述結果顯示,安非他命引起小腦Purkinje與granule層中DBH表現上升,可能是因為此藥物使兒茶酚胺纖維內的正腎上腺素枯竭,為補償正腎上腺素,因此形成DBH量的增加。安非他命引起Purkinje和granule層的TH下降,則可能是DBH上升,同時正腎上腺素的原料多巴胺或L-DOPA的上升所導致。貝克洛芬抑制部份安非他命所引起的變化,可能由自貝克洛芬透過GABAB接受器降低正腎上腺素的釋放。另一方面,Granule層細胞的pCREB表現,在所有藥物組皆有明顯的上升。在安非他命組的增加可能是經由正腎上腺素的釋放,活化granule層細胞的 ß1腎上腺素(ß1-adrenergic)接受器,引起cAMP的增加造成;貝克洛芬組和貝克洛芬與安非他命組pCREB的增加,則可能因GABAB接受器活化,提高cAMP所造成。 綜合以上所述,長期安非他命注射會使小腦皮質TH降低、DBH增加及granule細胞pCREB上升等改變,而貝克洛芬可以抑制安非他命在小腦引起的DBH增加與purkinje細胞TH的減少;在beam walking test上的初步資料也可看到貝克洛芬減低安非他命所引起通過速率的增加。而整體說來,貝克洛芬可以抑制安非他命所引起的改變,且可能與正腎上腺素系統改變有關。本研究的結果可以支持貝克洛芬對安非他命精神症的治療潛力。 | zh_TW |
| dc.description.abstract | Amphetamine(Amph)-treated animals display behavioral abnormality and sensitization, indicating a disturbed central nervous system, which could involve the cerebellum. The Amph-induced symptoms could be associated with the proposal that Amph acts as a false substrate to bind to the dopamine, norepinephrine (NE) and 5-hydroxytryptamine (5HT) transporters. Nerve fibers containing catecholamines project diffusely to all three layers of the cerebellar cortex, and could modulate the function of cerebellum via cellular mechanisms. Since tyrosine hydroxylase(TH) and dopamine -hydroxylase(DBH) are important rate-limiting enzymes in catecholamine biosynthesis, the presence of the two enzymes indicate catecholamine neurons and fibers. Moreover, the cyclic-AMP response element(CRE)-mediated transcription, CRE-binding protein(CREB), and catecholamine neurotransmitters have been directly implicated in many forms of neural plasticity including drug addiction. In addition, some evidences indicate that baclofen, one of GABAB receptor agonist, could attenuate Amph-induced syndrome in animals. Thus, this study explores the role cerebellum plays in the mechanisms for the action of Amph and/or baclofen, by monitoring the cerebellar expression of TH, DBH, CREB and phosphorylated CREB(pCREB).
Male adult SV129 mice received two daily i.p. injections of Amph(5mg/kg), baclofen(10mg/kg), Amph(5mg/kg) and baclofen(10mg/kg), or saline for 3 days. On the 4th day, the mice were injected with one dosage and perfused with the fixative 4 hours later. Coronal paraffin-embedded cerebellar sections were immunostained with the anti-CREB, anti-pCREB anti-TH and anti-DBH antisera. It was found that the Amph treatment down-regulated the TH and up-regulated the DBH expression in cerebellar cortex, and also up-regulated pCREB-immunoreactivity in the cerebellar granule cell layer compared with saline control. The expression of pCREB was not significantly altered in the molecular cell layer. In Purkinje cells, negative staining of CREB and pCREB was observed. While co-treatment with baclofen, the Amph-induced TH and DBH expression changes have been recovered to the level of saline treatment, and baclofen could not alter the Amph-induced pCREB increase in cerebellar granule cells. These suggest that baclofen could attenuate Amph-induced changes in cerebellar cortex in catecholamine system. Our data support that baclofen has therapeutic potential to treat amphetamine psychosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:14:23Z (GMT). No. of bitstreams: 1 ntu-94-R92446005-1.pdf: 1861764 bytes, checksum: 592867a4cb4219050a6cf4ae90d1bde0 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 英文摘要•••••••••••••••••••••••••••••••••••••1
中文摘要•••••••••••••••••••••••••••••••••••••3 緒論•••••••••••••••••••••••••••••••••••••••••6 材料與方法••••••••••••••••••••••••••••••••••13 結果••••••••••••••••••••••••••••••••••••••••20 討論••••••••••••••••••••••••••••••••••••••••29 結論••••••••••••••••••••••••••••••••••••••••36 參考文獻••••••••••••••••••••••••••••••••••••37 表格與說明••••••••••••••••••••••••••••••••••44 圖表與說明••••••••••••••••••••••••••••••••••51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 貝克洛芬 | zh_TW |
| dc.subject | 兒茶酚(月安) | zh_TW |
| dc.subject | 小腦 | zh_TW |
| dc.subject | 安非他命 | zh_TW |
| dc.subject | dopamine beta hydroxylase | en |
| dc.subject | CREB | en |
| dc.subject | baclofen | en |
| dc.subject | amphetamine | en |
| dc.subject | cerebellum | en |
| dc.subject | catecholamine | en |
| dc.subject | tyrosine hydroxylase | en |
| dc.title | 安非他命對小鼠小腦的兒茶酚胺神經支配及CREB磷酸化的影響:GABAB系統的角色 | zh_TW |
| dc.title | The Effect of Amphetamine on the Catecholamine Innervation and Phosphorylation of CREB in Mouse Cerebellum: the Role of GABAB Receptor. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王家儀,錢嘉韻,黃銀河 | |
| dc.subject.keyword | 安非他命,小腦,兒茶酚(月安),貝克洛芬, | zh_TW |
| dc.subject.keyword | cerebellum,amphetamine,baclofen,CREB,catecholamine,tyrosine hydroxylase,dopamine beta hydroxylase, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
