Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑(Yi-You Huang)
dc.contributor.authorKaw-Wei Kuoen
dc.contributor.author郭鎧瑋zh_TW
dc.date.accessioned2021-06-13T08:10:43Z-
dc.date.available2008-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-20
dc.identifier.citation[1] Arakawa, Y. and Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett. 1982, 40, 939
[2] Wei, Q. H.; Bechinger, C.; Leiderer, P. Single-File Diffusion of Colloids in One-Dimensional Channels, Science 2000, 287, 625.
[3] Mao, M. H. ; Wu, T. Y. ; Wu, D. C. ; Chang, F. Y. and Lin, H. H. Relaxation oscillations and damping factors of 1.3 μm In(Ga)As/GaAs quantum-dot lasers, Optical and Quantum Electronics 2004, 36, 10.
[4] Etourneau, J.; Portier, J. and Menil, F. The role of the inductive effect in solid state chemistry. How can the chemist play with it in order to modify the structural and the physical properties of the materials, J. of Alloys and Compounds, 1992, 188, 1-7
[5] Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B 1998, 38, 9797.
[6] Chen, C. C. ; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Size Dependence of Structural Metastability in Semiconductor Nanocrystals, Science 1997, 276, 398.
[7] Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, J. Phys. Chem. B 1997, 101, 9463.
[8] Sondi, I.; Siiman, O.; Koester, S.; Matijevic, E. Preparation of Aminodextran-CdS Nanoparticle Complexes and Biologically Active Antibody-Aminodextran-CdS Nanoparticle Conjugates, Langmuir 2000, 16, 3107.
[9] Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nature Biotechnology 2003, 21 (4), 452.
[10] Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nature Biotechnology 2003, 21 (1), 47.
[11] Taylor, J. R.; Fang, M. M.; Nie, S. Probing Specific Sequences on Single DNA Molecules with Bioconjugated Fluorescent Nanoparticles, Analytical Chemistry 2000, 72, 1979.
[12] Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 1996, 271, 933.
[13] Nirmal, M.; Brus, L. Luminescence Photophysics in Semiconductor Nanocrystals, Acc. Chem. Res. 1999, 32, 407.
[14] Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson, M. E. Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization, J. Am. Chem. Soc. 2001, 123, 4103.
[15] Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A. & Jovin, T. M. Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction, Nature Biotechnology 22, 198
[16] Wargnier, R.; Baranov, A. V.; Maslov, V. G.; Stsiapura, V.; Artemyev, M.; Pluot, M.; Sukhanova, A. and Nabiev, I. Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot-Nanogold Assemblies, nanoletters 2004, 4(3), 451.
[17] Patolsky, F.; Gill, R.; Weizmann, Y.; Mokari, T.; Banin, U. and Willner, I. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots, J. Am. Chem. Soc. 2003, 125, 13918.
[18] Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A.; Jovin, T. M. Quantum dot ligands provide new insights into erbB/HER receptor mediated signal transduction, Nature Biotech. 2004, 22, 198.
[19] Remedios, C.G.; Moens, P.D. Fluorescence resonance energy transfer spectroscopy is a reliable 'ruler' for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J. Struct. Biol. 1995, 115, 175
[20] Maxwell, D. J.; Taylor, J. R. and Nie, S. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules, J. AM. CHEM. SOC. 2002, 124, 9606
[21] Roberts, B.L.; Richardson, W.D.; Smith, A.E. The effect of protein context on nuclear location signal function. Cell. 1987, 50(3), 465
[22] Fahrenkrog, B.; Hurt, E. C.; Aebi, U. and Pant, N. Molecular Architecture of the Yeast Nuclear Pore Complex: Localization of Nsp1p Subcomplexes, Cell Biol. 1998, 143(3), 577
[23] Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S. and Feldheim, D. L. Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting, J. Am. Chem. Soc. 2003, 125, 4700.
[24] Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotech. 2004, 22, 969
[25] Kim, S.; Lim, Y. T.; Soltesz, E. G.; Grand, A. M. D.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G. & Frangioni, J. V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature biotechnology 2004, 22, 93.
[26] Dubertret, B.; Calame, M. and Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides, Nature biotechnology 2001, 19, 365.
[27] Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Advanced Drug Delivery Reviews 2003, 55(3), 329
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36678-
dc.description.abstract奈米尺度的量子點擁有優越的光學性質,它有獨特的發光特性、光學穩定性、可調整的發光波長、較窄的螢光放射光譜和很寬吸收光譜,因此量子點能取代傳統的有機染劑或放射性同位素標定,提供一個用來研究藥物和基因傳遞的有效工具。
在本篇論文中利用量子點來標定細胞吞噬軌跡,作為偵測BHK細胞的傳遞路徑與動態,量子點會經由細胞的胞噬作用攝入細胞內,我們可以利用奈米金原子抑制 (quench) 量子點螢光來清楚的分辨出是細胞內或細胞外的螢光,並減少螢光影像上所產生的雜訊,實驗結果顯示當量子點進入細胞時,螢光會聚集在細胞核的周遭,但並不會進到核中,我們利用 NLS 修飾量子點來增強量子點進入細胞和細胞核的效率。在這個研究中,量子點是一個有彈性且實用的實驗平台。
量子點可在活細胞內做長時間且多重的標定,並希望能發展一個結合生物相容性量子點和顯微影像的系統,提供藥物、基因傳遞跟癌症診斷在病理學上連續長效時間的重要資訊。
zh_TW
dc.description.abstractQuantum dots holds remarkable optical characteristics as a consequence of their nano-length scale. They uniquely feature bright, photostable, tunable and narrow fluorescence emissions and broad absorption spectra. Therefore, quantum dot provides a promising tool to investigate drug and gene delivery instead of a standard fluorophore or radiolabel.
In this study, we have used quantum dots as markers for phagokinetic tracks to determine the delivery routes and motility of BHK cells. Quantum dots will be uptake by cells easily through endocytosis. We can clearly differentiate the QDs outside the cell or inside the cell by quenching the QDs with similar size of nanogolds and reduce the noise of fluorescent image. Experiments results showed that when QDs entering into the cell, they will accumulate around the nucleus, but did not enter into the nucleus. Coupling the QDs with Nuclear Localization Signal (NLS) can enhance the translocation rate of QDs into cell and cell nucleus. The biocompatible quantum dot platform presented in this study is especially flexible and robust.
Quantum dots could be loaded into living cells for long-term, multicolor labeling. We hope we can develop a system combined with biocompatible quantum dots and microscopy imaging system to provide key information over a continuum of length scales and pathologies in drug/gene delivery and in tumor diagnosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:10:43Z (GMT). No. of bitstreams: 1
ntu-94-R92548030-1.pdf: 1784126 bytes, checksum: b891412400990677b1b235d3d4498666 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄
目錄 I
圖表目錄 Ⅳ
Abstract 1
中文摘要 2
第一章 緒論 3

第二章 文獻回顧 5
2-1 半導體奈米材料 5
2-2 量子點之量子化效應 5
2-3 量子點之優勢 10
2-4 奈米材料的合成 11
2-5 量子點表面鈍化 12
2-6 量子點之修飾與應用 13
2-7 螢光共振能量轉移現象 14
2-8 奈米金原子的特性 15
2-9 NLS 的功能 16
第三章 研究動機與目的 18
第四章 實驗材料與方法 19
4-1 實驗藥品與器材 19
4-1-1 實驗藥品 19
4-1-2 實驗儀器 21
4-2 實驗溶液與培養液配置 22
4-3 量子點之性質 24
4-4 奈米金原子顆粒的合成 26
4-5 細胞培養 27
4-6 以NLS、Streptavidin、non-targeted 修飾之量子點培養細胞 28
4-7 NLS (Nuclear Location Signal) 之合成 29
4-8 細胞記數 31
4-9 MTS 細胞活性測試 32
第五章 結果與討論 34
5-1 量子點之螢光特性 34
5-2 培養環境對量子點進入細胞之影響 38
5-3 量子點進入之機制與過程 39
5-4 金原子抑制 (quench) 量子點螢光之能力 41
5-5 金原子應用在細胞觀測上之螢光強化 44
5-6 Streptavidin 對量子點進入細胞之影響 47
5-7 金原子和量子點對 BHK 細胞之活性測試 50
5-8 高濃度金原子quench 對 BHK 細胞活性之影響 54
5-9 NLS (Nuclear Location Signal) 結合量子點進入細胞核之過程 56
第六章 結論 59
參考文獻 60

圖表目錄
圖2-1 不同維度之奈米材料與能階密度關係 6
圖2-2 LUMO、HOMO、VB、CB、Eg 能量關係示意圖 7
圖2-3 量子點之粒徑,與呈色上之差別 8
圖2-4 波形能量示意圖 9
圖2-5 FRET 光譜重疊示意圖 14
圖2-6 NLS 分子作用示意圖 17
圖4-1 CdSe/ZnS 構造與修飾之示意圖 25
圖4-2 量子點的吸收光譜與放射光譜 25
圖4-3 製備奈米金原子顆粒的標準曲線 26
圖4-4 NLS 序列 HPLC 的吸收圖譜 30
圖4-5 NLS序列 質譜儀圖譜 30
圖4-6 MTS tetrazolium 結構和 formazan 產物 33
圖4-7 MTS 吸收值與細胞總數之關係 33
圖5-1 量子點在100% FCS 中螢光強度隨時間之變化 34
圖5-2 有機螢光分子與量子點在不同激發強度下的衰減速率 35
圖5-3 金原子對fluorescein 的螢光抑制效果 35
圖5-4 MgCl2 中和DNA 之負電,增加 quench 效果 37
圖5-5 經胞噬作用進入細胞內之機制流程圖 39
圖5-6 螢光顯微鏡下量子點與細胞的型態 40
圖5-7 金原子對量子點 (QD 655) 的螢光抑制能力 42
圖5-8 金原子對量子點 (QD 655) 螢光抑制臨界值 43
圖5-9 4℃金原子 quench 與 wash 實驗之表示圖 45
圖5-10 Image-Pro Plus 的影像強度分析圖 46
圖5-11 BHK 細胞與未修飾量子點培養之影像圖 48
圖5-12 BHK 細胞與修飾 Streptavidin 量子點培養之影像圖 48
圖5-13 單顆 BHK 細胞的示意圖 49
圖5-14 BHK 細胞在含量子點培養液之MTS 圖表 52
圖5-15 BHK 細胞在含金原子培養液之MTS 圖表 53
圖5-16 BHK 細胞在含高濃度金原子和量子點培養液之MTS 圖表 55
圖5-17 修飾 NLS 的量子點進入 BHK 細胞之螢光圖 57
圖5-18 NLS 之單顆 BHK 細胞 phase、螢光圖 57
圖5-19 NLS 之雙核 BHK 細胞 phase、螢光圖 58
dc.language.isozh-TW
dc.subject量子點zh_TW
dc.subject核定位訊號zh_TW
dc.subject奈米金原子zh_TW
dc.subjectnanogolden
dc.subjectquantum doten
dc.subjectNLSen
dc.title量子點結合奈米金原子應用於細胞內分子傳遞路徑之研究zh_TW
dc.titleQuantum Dots Combined Nanogold Apply to Detect the Dynamic Routes of Molecule in Cellsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭宏志,鐘次文,劉得任
dc.subject.keyword量子點,奈米金原子,核定位訊號,zh_TW
dc.subject.keywordquantum dot,nanogold,NLS,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2005-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved