請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36638完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Kuo-Jui Sun | en |
| dc.contributor.author | 孫國瑞 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:08:57Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-21 | |
| dc.identifier.citation | [1] Dominique Bayart, “Erbium-doped and Raman fiber amplifiers” C.R. Physique, 4, pp. 65–74, 2003.
[2] S. Kennou, S. Ladas, M. G. Grimaldi, T. A. Nguyen Tan, J. Y. Veuillen, “Oxidation of thin erbium and erbium silicide overlayers in contact with silicon oxide films thermally grown on silicon” Applied Surface Science, 102, pp. 142-146, 1996. [3] Karine Seneschal, Frederic Smektala, Shibin Jiang, Tao Luo, Bruno Bureau, Jacques Lucas, Nasser Peyghambarian, “Alkaline-free phosphate glasses for ultra compact opticalfiber amplifiers at 1.5 μm” Journal of Non-Crystalline Solids, 324, pp. 179-186, 2003. [4] Michel J. F. Digonnet, Rare Earth Doped Fiber Lasers and Ampilifers, Dekker, 1993. [5] A.J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics” Progress in Quantum Electronics, 26, pp. 225–284, 2002. [6] William J. Miniscalco, “Erbium-Doped Glasses for Fiber Amplifiers at 1500 nm” Journal of Lightwave Technology, Vol. 9, No. 2, February 1991. [7] Amitava Patra, “Study of photoluminescence properties of Er3+ ions in SiO2–GeO2 and Al2O3 nanoparticles” Solid State Communications, 132, pp. 299–303, 2004. [8] C.S. Zhang, H.B Xiao, Y.J. Wang, Z.J. Cheng, X.L. Cheng, F. Zhang, “Photoluminescence thermal quenching behaviors of Er-doped SiOx (x<2) prepared by ion implantation” Physica B, 362, pp. 208-213, 2005. [9] Kimmo Solehmainen, Paivi Heimala, Markku Kapulainen, Kirsi Polamo, Runar Tornqvist, “Erbium-doped planar waveguides with atomic layer deposition method” Proceedings of SPIE, 4990, pp. 121-128, 2003. [10] Jens Gottmann, Georg Schlaghecken, Ralph Wagner, Ernst W. Kreutz, “Fabrication of erbium-doped planar waveguides by pulsed-laser deposition and laser micromachining” Proceedings of SPIE, 4941, pp. 148-156, 2003. [11] James S Wilkinson, Martin Hempstead, “Advanced materials for fibre and waveguide amplifiers” Current Opinion in Solid State & Materials Science, 2, pp.194-199, 1997. [12] Steffena Reichel, Matthiasa Brinkmann, “Planar erbium-doped waveguide amplifiers in glasses: rigorous theory and experimental investigations” Optical Materials, 25, pp. 123-129, 2004. [13] Miin-Jang Chen, Light Emission from Metal-Insulator-Semiconductor Tunneling Diodes on Silicon, doctoral thesis (Graduate institute of Electro-Optical Engineering, National Taiwan University), 2001. [14] Albert Polman, Frank C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review” J. Opt. Soc. Am. B, 21, pp. 871-892, 2004. [15] G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, P. Laporta, “Active waveguide devices by Ag–Na ion exchange on erbium–ytterbium doped phosphate glasses” Journal of Non-Crystalline Solids, 322, pp. 256–261, 2003. [16] J. Michel, J.L. Benton, R.F. Ferrante, D.C. Kimerling, “Impurity enhancement of the 1.54μm Er3+ luminescence in silicon” J. Appl. Phys., 70, pp. 2672-2678, 1991. [17] N. A. Sobolev, “Silicon doping by erbium to create light-emitting structures” Microelectronics J., 26, pp. 725-735, 1995. [18] H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haudl, and J. Schneider, “1.54 μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy” Appl. Phys. Lett.,46, pp. 381-383, 1985. [19] A. Polman, J.S. Custer, E. Snoeks, and G.N. van den Hoven, “Incorporation of high concentrations of erbium in crystal silicon” Appl. Phys. Lett., 62, pp. 507-509, 1993. [20] Vincent Rotello, Nanoparticles: Building Blocks for Nanotechnology, Kluwer Academic/Plenum, 2004. [21] Günter Schmid, Nanoparticles: From Theory to Application, Wiley, 2004. [22] Ching-Fuh Lin, Eih-Zhe Liang, Sheng-Ming Shih, and Wei-Fang Su, “Significance of Surface Properties of CdS Nanoparticles” Jpn. J. Appl. Phys., Vol. 42, pp. L 610–L 612, 2003. [23] O. Lehmann, H. Meyssamy, K. Ko1mpe, H. Schnablegger, and M. Haase, “Synthesis, Growth, and Er3+ Luminescence of Lanthanide Phosphate Nanoparticles” J. Phys. Chem. B, 107, pp. 7449-7453, 2003. [24] V. Buissette, A. Huignard, T. Gacoin, J.-P. Boilot, P. Aschehoug, B. Viana, “Luminescence properties of YVO4:Ln (Ln=Nd, Yb, and Yb–Er) nanoparticles” Surface Science, 532–535, pp. 444–449, 2003. [25] Y.H. Xie, E.A. Fitzgerald, Y.J. Mii, “Evaluation of erbium-doped silicon for optoelectronic applications” J. Appl. Phys., 70, pp. 3223-3228, 1991. [26] Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, 2001. [27] Zhuping Liu, Changhong Qi, Shixun Dai, Yasi Jiang, Lili Hu, “Spectra and laser properties of Er3+, Yb3+:phosphate glasses” Optical Materials, 21, pp. 789–794, 2003. [28] P.G. Kik, A. Polman, “Exciton–erbium energy transfer in Si nanocrystal-doped SiO2” Materials Science and Engineering, B81, pp. 3–8, 2001. [29] Emmanuel Desurvire, Erbium-doped Fiber Amplifiers, John Wiley & Sons, 1994. [30] Zhuping Liu, Changhong Qi, Shixun Dai, Yasi Jiang, Lili Hu, “Spectra and laser properties of Er3+, Yb3+:phosphate glasses” Optical Materials, 21, pp. 789–794, 2003. [31] http://csrg.ch.pw.edu.pl/prepapers/dstadnik/fiber_technology.html [32] G. G. Vienne, W. S. Brocklesby, R. S. Brown, Z. J. Chen, J.D. Minelly, J. E. Roman, D. N. Payne, “Role of Aluminum in Ytterbium-Erbium Codoped Phosphoaluminosilicate Optical Fibers” Optical Fiber Technology, 2, pp. 387-393, 1996. [33] P.W. France, Optical Fiber Lasers and Amplifiers, Blackie, 1991. [34] Christof Strohhöfer, Optical properties of ion beam modified waveguide materials doped with erbium and silver, Proefschrift Universiteit Utrecht, 2001. [35] M.S. Bresler, O.B. Gusev, P.E. Pak, N.A. Sobolev, I.N. Yassievich, “New efficient mechanism of excitation of electroluminescence from erbium ions in crystalline silicon” Journal of Luminescence, 80, pp. 375-379, 1999. [36] Kenji Imakita, Minoru Fujii, Shinji Hayashi, “Spectrally resolved energy transfer from excitons in Si nanocrystals to Er ions” PHYSICAL REVIEW B, 71, 193301, 2005. [37] Guillaume G. Vienne, Julie E. Caplen, Liang Dong, John D. Minelly, Johan Nilsson, David N. Payne, “Fabrication and Characterization of Yb3+:Er3+ Phosphosilicate Fibers for Lasers” Journal of Lightwave Technology, Vol. 16, No. 11, pp. 1990-2001, November 1998. [38] Ivan Kasik, Vlastimil Matejec, Jioi Kanka and Pavel Honzatko “Properties and fabrication of ytterbium–erbium co-doped silica fibres for high-power fibre lasers” Pure Appl. Opt., 7, pp. 457–465, 1998. [39] FILMTRONICS Inc., Spin-on Glasses, Revision #5, 1998. [40] http://www.metall.com.cn/ero.htm [41] http://www.chemicalland21.com/arokorhi/industrialchem/inorganic/ PHOSPHORUS%20PENTOXIDE.htm [42] http://www.webelements.com/webelements/elements/text/Si/key.html [43] http://www.meliorum.com/silicon.htm [44] http://www.metall.com.cn/ybo.htm [45] G.V. V azquez, P.D. Townsend, “Improvements of ion implanted waveguides in Nd:YAG and LiNbO3 using pulsed laser anneals” Nuclear Instruments and Methods in Physics Research B, 191, pp. 110–114, 2002. [46] Dae-Jin Kim, Seong-Eun Park, Hyun-Jung Kim, Je-Kil Ryu, Byungsung O, and Sung-Sik Pak, “Excimer Laser Annealing with a Line Beam for Improvement of Structural and Optical Properties of Polycrystalline GaN” Jpn. J. Appl. Phys., 42, pp. 7349–7353, 2003. [47] A. T. Fiory, “METHODS IN RAPID THERMAL ANNEALING” Proceedings of RTP 2000, Eighth International Conference on Advanced Thermal Processing of Semiconductors, pp. 15-25, 2000. [48] M.Q. Huda, A.R. Peaker, “Incorporation and optical activation of erbium in strained silicon-germanium structures” Solid-State Electronics, 45, pp. 1927-1930, 2001. [49] M.Q. Huda, S.I. Ali, “A study on stimulated emission from erbium in silicon” Materials Science and Engineering, B105, pp. 146–149, 2003. [50] L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements” Optics Communications, 229, pp. 337–348, 2004. [51] Hak-Seung Han, Se-Young Seo, Jung H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide” Appl. Phys. Lett., 79, pp. 4568, 2001. [52] Christof Strohhofer, Albert Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers” J. Appl. Phys., 90, pp. 4314-4320, 2001. [53] P. G. Kik, A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers” J. Appl. Phys., 93, pp. 5008-5012, 2003. [54] A. Polman, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon” Appl. Phys. Lett., 84, pp. 1037-1039, 2004. [55] K.L. Shaklee, R.E. Nahaori, L.F. Leheny, J. Lumin., 7, pp. 284, 1973. [56] Chun Jiang, Qingji Zeng, “Optimization of erbium-doped waveguide amplifier” Optics & Laser Technology, 36, pp. 167 – 171, 2004. [57] L. Dal Negro, L. Pavesi, G. Pucker, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals” Optical Materials, 17, pp.41-44, 2001. [58] A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, 1997. [59] L. Pavesi, Z. Gaburro, L. Dal Negro, P. Bettotti, G. Vijaya Prakash, M. Cazzanelli, C.J. Oton, “Nanostructured silicon as a photonic material” Optics and Lasers in Engineering, 39, pp. 345–368, 2003. [60] P.M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R.G. Elliman, N. Smith, M. Samoc, B. Luther-Davies, “Optical gain in different silicon nanocrystal systems” Optical Materials, 27, pp.745-749, 2005. [61] Maria Eloisa Castagna, Salvatore Coffa, Mariantonietta Monaco, Anna Muscara, Liliana Caristia, Simona Lorenti, Alberto Messina, “High efficiency light emitting devices in silicon” Materials Science and Engineering, B105, pp. 83–90, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36638 | - |
| dc.description.abstract | Nanotechnology gives opportunity for many fields of engineering and optical communication provides the solution for huge quantity of data transmission nowadays. Accompanying the blooming research in nanotechnology and the demand of optical communication, a novel fabricating technique that utilizes nanoparticles to fabricate silicon-based optical communication device is introduced in this thesis. The structure of this device is a light emitting layer deposited on silicon substrate. The reason for choosing silicon as substrate is that silicon plays the leading role in modern integrated circuit (IC) industrial.
The luminescence wavelength of this emitting layer corresponds to 1530 nm, which is a very important band in optical communication system. The emitting layer is mainly composed of Er3+ ions and host glass. The source of Er3+ ions is Er2O3 nanoparticles. The host glass is formed with spin-on glass (SOG), which is widely used in semiconductor manufacturing. There are also co-dopants including P2O5, Al, Ag, Si, and Yb2O3 nanoparticles being doped in the emitting layer in order to modify the physical characteristics and to improve light emission efficiency. The influences of these co-dopants are investigated. For the purpose of optical activation of Er3+ ions and other chemical reactions in the emitting layer, thermal processes are essential in the fabricating process. The heat treatment parameters are investigated too. Finally, observations of the optical gain exhibited in the emitting layer are given. Compared with ion implantation, solid phase epitaxy, and other techniques, our fabricating technique is simple and of low cost. This fabricating technique is a promising work and worth developing in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:08:57Z (GMT). No. of bitstreams: 1 ntu-94-R92941021-1.pdf: 1373127 bytes, checksum: 61a041e56d5b8bb0bf5df8478663632e (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Chapter 1 Introduction
1-1 Motivation 1 1-2 Outline 8 Chapter 2 The Basic Theory and Experiments 2-1 Introduction 9 2-2 The Surface Effect of Nanoparticles 10 2-3 Er3+ Physics, Characteristics, and General Background 12 2-4 The Manufacturing Process 15 2-5 The Measurement Setup 17 2-6 Conclusion 20 Chapter 3 The Influence of Composition 3-1 Introduction 21 3-2 Spin-on Glass Mixed with Er2O3 Only 22 3-3 The Influence of P2O5 Nanoparticles 25 3-4 The Influence of Al Nanoparticles 29 3-5 The Influence of Ag Nanoparticles 32 3-6 The Influence of Si Nanoparticles 38 3-7 The Influence of Yb2O3 Nanoparticles 42 3-8 Conclusion 49 3-A Descriptions, Specifications and Vendors of Materials 51 Used in the Emitting Layer Chapter 4 Thermal Processes and Thickness of Emitting Layer 4-1 Introduction 55 4-2 The Heating Condition in the Furnace 56 4-3 High Energy 248 nm Deep Ultraviolet Laser Annealing 60 4-4 Rapid Thermal Annealing 67 4-5 The Effect of the Thickness of Emitting Layer 68 4-6 Conclusion 72 Chapter 5 Optical Gain 5-1 Introduction 73 5-2 Reviews of Planar Erbium-doped Optical Gain Devices 74 5-3 Measurement Setup - Variable Stripe Length Method 77 5-4 Non-linear Variation of 1530 nm Signal 80 5-5 Gain Coefficient 83 5-6 Conclusion 90 5-A More Detail about Variable Stripe Length Method 90 Chapter 6 Summary and Perspective 6-1 Summary 93 6-2 Perspective 96 References 98 | |
| dc.language.iso | en | |
| dc.subject | 稀土元素 | zh_TW |
| dc.subject | 光增益 | zh_TW |
| dc.subject | 光通訊 | zh_TW |
| dc.subject | 奈米科技 | zh_TW |
| dc.subject | 旋塗玻璃 | zh_TW |
| dc.subject | 氧化鉺 | zh_TW |
| dc.subject | 矽 | zh_TW |
| dc.subject | rare earth compounds | en |
| dc.subject | spin-on glass | en |
| dc.subject | silicon | en |
| dc.subject | nanotechnology | en |
| dc.subject | optical communication | en |
| dc.subject | optical pumping | en |
| dc.subject | optical gain | en |
| dc.title | 使用奈米粒子製作矽基摻鉺光通訊元件 | zh_TW |
| dc.title | Fabrication of Erbium-doped Silicon-based Optical Communication Device Using Nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳靜雄,林唯芳,何旻真 | |
| dc.subject.keyword | 奈米科技,光通訊,稀土元素,氧化鉺,光增益,矽,旋塗玻璃, | zh_TW |
| dc.subject.keyword | nanotechnology,optical communication,optical pumping,rare earth compounds,optical gain,silicon,spin-on glass, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
