請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36634
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁詩同(Shih-Torng Ding) | |
dc.contributor.author | Chi-Jung Chwang | en |
dc.contributor.author | 章起榕 | zh_TW |
dc.date.accessioned | 2021-06-13T08:08:46Z | - |
dc.date.available | 2006-07-27 | |
dc.date.copyright | 2005-07-27 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-21 | |
dc.identifier.citation | 王樹海、王文健、汪雪峰及陳偉華。2004。紅景天對3T3-L1脂肪細胞糖代謝及細胞分化的影響。中西醫結合學報03期。 193-195。
吕仁和。2005。糖尿病肾病分期辨治568例临床分析。中國科技論文在線。(www.paper.edu.cn) 李傳及黃勤妮。2003。紅景天屬植物的研究及應用。首都師範大學學報 24卷1期。55-59。 林文星。2001。胰島素阻抗性,糖尿病,肥胖:由差異呈現法至分子遺傳學的研究。台灣大學醫學院分子醫學研究所博士論文。台北。 郭洁文、李麗明、潘競鏘、邱光清、李愛華、黃國華及許蓮好。2004。荔枝核拮抗2型糖尿病大鼠胰島素抵抗作用的藥理學机制。中藥材,06期。435-438。 許哲銘。2002。多不飽和脂肪酸藉轉錄因子影響豬隻脂肪代謝之探討。台灣大學畜產學系碩士論文。台北。 陳盈臻。2003。蔬果成份物質對 3T3-L1 脂肪細胞分化的影響。台灣大學園藝學研究所碩士論文。台北。 楊燕軍及梁北梅。2004。荔枝核抗糖尿病有效部位總皂的含量測定。廣東藥學06期。13-15。 劉秉勳。2003。多不飽和脂肪酸隊豬隻脂質代謝基因之影響。台灣大學畜產學系碩士論文。台北。 顏呈峰、柯雅慧及丁詩同。2003。北方吸漬法。脂肪細胞學研究技術專輯。87-94。 季培元。1992。家畜解剖生理學。國立編譯館 出版。 合記圖書出版社 發行。台北。 Adorini, L., S. Gregori, and L. C. Harrison. 2002. Understanding autoimmune diabetes: insights from mouse models. Trends Mol. Med. 8:31-38. Agostoni, C., S. Trojan, R. Bellu, E. Riva, and M. Giovannini. 1995. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: the role of long-chain polyunsaturated fatty acids. Pediatr. Res. 38:262-266. Amri E. Z., Dani C, Doglio A, Grimaldi P, and Ailhaud G. 1986. Coupling of growth arrest and expression of early markers during adipose conversion of preadipocyte cell lines. Biochem. Biophys. Res. Commun. 137:903-910. Ahima, R., and S. Y. Osei. 2004. Leptin and appetite control in lipodystrophy. J Clin Endocrinol Metab. 89:4254-2457. Ahima, R., and S. Y. Osei. 2004. Leptin signaling. Physiol Behav. 81:223-241. Banting, F. G., and C. H. Best. 1922. Pancreatic extracts. J. Lab. Clin. Med. 115:254-272. Bailey, C.J. and S. L. Turner. 2004. Glucosamine-induced insulin resistance in L6 muscle cells. Diabetes Obes. Metab. 6:293-298. Barr, V. A., D. Malide, M. J. Zarnowski, S. I. Taylor, and S. W. Cushman. 1997. Insulin stimulates both leptin secretion and production by rat white adipose tissue. Endocrinology 138:4463-4472. Cases, J. A., I. Gabriely, X. M. Yang, T. Michaeli, N. Fleischer, L. Rossetti, and N. Barzilai. 2001. Physiological increase in plasma leptin markedly inhibits insulin secretion in vivo. Diabetes 50:348-352. Cheatham, B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. 1994. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14:4902-4911. Chen H, B. L. Ing, K. A. Robinson, A. C. Feagin, M. G. Buse, M. J. Quon. 1997. Effects of overexpression of glutamine:fructose-6-phosphate amidotransferase (GFAT) and glucosamine treatment on translocation of GLUT4 in rat adipose cells. Mol. Cell Endocrinol. 135:67-77 Chisholm, D. J., L. V. Campbell, and E. W. Kraegen. 1997. Pathogenesis of the insulin resistance syndrome (syndrome X). Clin. Exp. Pharmacol. Physiol. 24:782-784. Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159. Chu, D. T., C. M. Davis, N. B. Chrapkiewicz, and D. K. Granner. 1988. Reciprocal regulation of gene transcription by insulin. Inhibition of the phosphoenolpyruvate carboxykinase gene and stimulation of gene 33 in a single cell type. J. Biol. Chem. 263:13007-13011. Cowherd, R. M., R. E. Lyle, and R. E. McGehee Jr. 1999. Molecular regulation of adipocyte differentiation. Semin. Cell Dev. Biol. 10:3-10. Czech, M. P., and S. Corvera. 1999. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274:1865-1868. Day, C. 1999. Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med. 16:179-192. Denys, A., A. Hichami, and N. A. Khan. 2001. Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells. J Lipid Res. 42:2015-2020. Dewailly, E., C. Blanchet, S. Lemieux,L. Sauve, S. Gingras, P. Ayotte, and B. J. Holub. 2001. n-3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. Am J Clin Nutr. 74:464-473. Ding, S. T., R. L. McNeel, and H. J. Mersmann. 1999. Expression of porcine adipocyte transcripts: tissue distribution and differentiation in vitro and in vivo. Comp. Biochem. Physiol. 123B:307-318. Diniz, Y. S., A. C. Cicogna, C. R. Padovani, L. S. Santana, L. A. Faine, and E. L. Novelli. 2004. Diets rich in saturated and polyunsaturated fatty acids: metabolic shifting and cardiac health. Nutrition 20:230-234. Dunnaif, A., J. Xia, C. B. Book, E. Schenke, and Z. Tang. 1995. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J. Clin. Invest. 96:801-810. Fasshauer, M., J. Klein, S. Neumann, M. Eszlinger, and R. Paschke. 2002. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 290:1084-1089. Fernandez-Real, J. M., A. Castro, G. Vazquez, R. Casamitjana, A. Lopez-Bermejo, G. Penarroja, and W. Ricart. 2004. Adiponectin is associated with vascular function independent of insulin sensitivity. Diabetes Care 27:739-745. Ferre, P. 2004. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes. 53 Suppl 1:S43-50. Fruhbeck, G., J. Gomez-Ambrosi, F. J. Muruzabal, and M. A. Burrell. 2001. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am. J. Physiol. Endocrinol. Metab. 280:E827-847. Gibson, D. M., and Harris R. A. 2002. Metabolic regulation in mammals. Gaben-Cogneville A. M., B. Breant, A. M. Coudray, D. H. Hoa, and J. Mester. 1990. Differentiation of newborn rat preadipocytes in culture: effects of insulin and dexamethasone. Exp. Cell Res. 191:133-140. Garcia de Herreros, A. and M. J. Birnbaum. 1989. The acquisition of increased insulin-responsive hexose transport in 3T3-L1 adipocytes correlates with expression of a novel transporter gene. J. Biol. Chem. 264:19994-19999. Girard, J., D. Perdereau, F. Foufelle, C. Prip-Buus, and P. Ferre. 1994. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 8:36-42. Green, H. and M. Meuth. 1974. An established pre-adipose cell line and its differentiation in culture. Cell 3:127-133. Green, A., J. M. Rumberger1., C. A. Stuart, and M. S. Ruhoff. 2004. Stimulation of lipolysis by tumor necrosis factor-α in 3T3-L1 adipocytes is glucose dependent implications for long-term regulation of lipolysis. Diabetes 53:74-81 Hazen, S. A., W. A. Rowe, and C. J. Lynch. 1995. Monolayer cell culture of freshly isolated adipocytes using extracellular basement membrane components. J. Lipid Res. 36:868-875. Heart, E., W. S. Choi, and C. K. Sung. 2000. Glucosamine-induced insulin resistance in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 278:E103-112. Holt, K. H. , L. Olson, W. S. Moye-Rowley, and J. E. Pessin. 1994. Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol. Cell. Biol. 14:42-49. Hresko, R. C., H. Heimberg, M. M. Chi, and M. Mueckler. 1998. Glucosamine-induced insulin resistance in 3T3-L1 adipocytes is caused by depletion of intracellular ATP. J. Biol. Chem. 273:20658-20668. Hu, E., P. Liang, and B. M. Spiegelman. 1996. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271:10697-10703. Hu, P, A. Mondino, E. Y. Skolnik, and J. Schlessinger. 1993. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol. Cell Biol. 13:7677-7688. Hug, C., and H. F. Lodish. 2005. Visfatin:A New Adipokine. Science 307:366-367. Hussain, M. A. 1998. A case of glucosamine. Euro. J. Endocrin. 139:472-475. Imagawa, M., T. Tsuchiya, and T. Nishihara. 1999. Identification of inducible genes at the early stage of adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun. 254:299-305. Joost, H. G., G. I. Bell, J. D. Best, M. J. Birnbaum, M. J. Charron, Y. T. Chen, H. Doege, D. E. James, H. F. Lodish , K. H. Moley, J. F. Moley, M. Mueckler, S. Rogers, A. Schurmann, S. Seino, and B. Thorens. 2002. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am. J. Physiol. Endocrinol. Metab. 282:E974-976. Jump, D. B. 2002. The biochemistry of n-3 polyunsaturated fatty acids. J. Biol. Chem. 277:8755-8758. Kanai, Y., W. S. Lee, G. You, D. Brown, and M. A. Hediger. 1994. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest. 93:397-404. Kasuga, M., J. A. Hedo, K. M. Yamada, and C. R. Kahn. 1982. The structure of insulin receptor and its subunits. Evidence for multiple nonreduced forms and a 210,000 possible proreceptor. J. Biol. Chem. 257:10392-10399. Katagiri, H., T. Asano, H. Ishihara, K. Inukai, Y. Shibasaki, M. Kikuchi, Y. Yazaki, and Y. Oka. 1996. Overexpression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 271:16987-16990. Katz, E. B., A. E. Stenbit, K. Hatton, R. DePinho, M. J. Charron. 1995. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377:151-155. Kennedy, J. W., M. F. Hirshman, E. V. Gervino, J. V. Ocel, R. A. Forse, S. J. Hoenig, D. Aronson, L. J. Goodyear, and E. S. Horton. 1999. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48:1192-1197. Kim, K. H., L. Zhao, Y. Moon, C. Kang, and H. S. Sul. 2004. Dominant inhibitory adipocyte-specific secretory factor (ADSF)/resistin enhances adipogenesis and improves insulin sensitivity. Proc. Natl. Acad. Sci. USA. 101:6780-6785. Kletzien, R. F., S. D. Clarke, and R. G. Ulrich. 1992. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol. Pharmacol. 41:393-398. Knight, D. M., A. B. Chapman, M. Navre, L. Drinkwater, J. J. Bruno, and G. M. Ringold. 1987. Requirements for triggering of adipocyte differentiation by glucocorticoids and indomethacin. Mol. Endocrinol. 1:36-43. Kreutz, F. H. 1962. Enzymatic glycerin determination. Klim. Wochenschr. 40:362-363. Kristensen, S. D., A. M. Iversen, and E. B. Schmidt. 2001. n-3 polyunsaturated fatty acids and coronary thrombosis. Lipids 36 (Suppl):S79-82. Kuri-Harcuch, W, and H. Green. 1977. Increasing activity of enzymes on pathway of triacylglycerol synthesis during adipose conversion of 3T3 cells. J. Biol. Chem. 252:2158-6210. Larsen, T. M., S. Toubro, and A. Astrup. 2003. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int. J. Obes. Relat. Metab. Disord. 27:147-161. Larsson, S. C., M. Kumlin, M. Ingelman-Sundberg, and A. Wolk. 2004. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am. J. Clin. Nutr. 79:935-945. Lee, K. H., K. J. White, J. P. Robinson, and K. H. Kim. 1990. Ca2+ redistribution from bound to free form is required for tumor necrosis factor actions in 30A5 preadipocytes. Mol. Endocrinol. 4:1671-1678. Leroy, P., S. Dessolin, P. Villageois, B. C. Moon, J. M. Friedman, G. Aihaud, and C. Dani. 1996. Expression of ob gene in adipose cells, regulation by insulin. J. Biol. Chem. 271:2365-2368. Leslie, R. D. G., N. R. Lazarus, and D. Vergani. 1989. Aetiology of insulin-dependent diabetes. Br. Med. Bull. 45:58-72. Litthauer, D. and G. Serrero. 1992. The primary culture of mouse adipocyte precursor cells in defined medium. Comp. Biochem. Physiol. A Physiol. 101:59-64. Louheranta, A. M., U. S. Schwab, E. S. Sarkkinen, E. T. Voutilainen, E. M. Ebeling, A. T. Erkkila, A. K. Turpeinen, and M. I. Uusitupa. 2000. Insulin sensitivity after a reduced-fat diet and a monoene-enriched diet in subjects with elevated serum cholesterol and triglyceride concentrations. Nutr. Metab. Cardiovasc. Dis. 10:177-187. Ma, K., A. Cabrero, P. K. Saha, H. Kojima, L. Li, B. H. Chang, A. Paul, and L. Chan. 2002. Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J. Biol. Chem. 277:34658-34661. Maeda, K., K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, and K. Matsubara. 1996. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221:286-289. Maeda, N., I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, N. Furuyama, H. Kondo, M. Takahashi, Y. Arita, R. Komuro, N. Ouchi, S. Kihara, Y. Tochino, K. Okutomi, M. Horie, S. Takeda, T. Aoyama, T. Funahashi, and Y. Matsuzawa. 2002. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8:731-737. Marshall, J. A., D. H. Bessesen, and R. F. Hamman. 1997. High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia 40:430-438. McClain D. A., M. Hazel, G. Parker, and R. C. Cooksey. 2004. Adipocytes with increased hexosamine flux exhibit insulin resistance, increased glucose uptake, and increased synthesis and storage of lipid. Am. J. Physiol. Endocrinol. Metab. 288:E973-979. McIlroy, J., D. Chen, C. Wjasow, T. Michaeli, and J. M. Backer. 1997. Specific activation of p85-p110 phosphatidylinositol 3'-kinase stimulates DNA synthesis by ras- and p70 S6 kinase-dependent pathways. Mol. Cell. Biol. 17:248-255. McIntosh, M., D. Hausman, R. Martin, and G. Hausman. 1998. Dehydroepiandrosterone attenuates preadipocyte growth in primary cultures of stromal-vascular cells. Am. J. Physiol. 275:E285-293. Meijssen, S., M. C. Cabezas, C. G. Ballieux, R. J Derksen, S. Bilecen, and D. W. Erkelens. 2001. Insulin mediated inhibition of hormone sensitive lipase activity in vivo in relation to endogenous catecholamines in healthy subjects. J. Clin. Endocrinol. Metab. 86:4193-4197. Michael, J. T., M. G. Williams, and S. C. Frost. 1997. Development of insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 272:7759-7764. Miller, J. L. 2003. Insulin resistance syndrome. Description, pathogenesis, and management. Postgrad. Med. Spec. No:27-34. Molly, C. C. and J. D. Brunzell. 2004. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J. Clin. Endocrinol. Metab. 89:2601-2607. Morrison, R. F., and S. R. Farmer. 1999. Role of PPARγ in regulating a cascade expression of cyclic-dependent kinase inhibitors, p18(INK4c), and p21(Waf1/Cip1), during adipogenesis. J. Biol. Chem. 274:17088-17097. Murray, K. R., D. K. Granner, P. A. Mayes, and V. W. Rodwell. 1999. Harper’s Biochemistry (25th). Appleton & Lange. Connecticut. 160-161, and 250-251. Myers, M. G. Jr., J. M. Backer, X. J. Sun, S. Shoelson, P. Hu, J. Schlessinger, M. Yoakim, B. Schaffhausen, and M. F. White. 1992. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA. 89:10350-10354. Naito, C. and K. Okada. 1975. Effect of glucose on lipolysis and on release of lipolytic products in isolated adipocytes. Am. J. Physiol. 228:92-97. Nauck, M. A. 2004. Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Horm. Metab. Res. 36:852-858. Naylor, J. L., C. D. Schraer, A. M. Mayer, A. P. Lanier, C. A. Treat, and N. J. Murphy. 2003. Diabetes among Alaska Natives: a review. Int. J. Circumpolar. Health 62:363-387. Nelson, B. A., K. A. Robinson, and M. G. Buse. 2000. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes 49:981-991. Obici, S., and L. Rossetti. 2003. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology. 144:5172-5178. O'Brien, R. M., M. T. Bonovich, C. D. Forest, and D. K. Granner. 1991. Signal transduction convergence: phorbol esters and insulin inhibit phosphoenolpyruvate carboxykinase gene transcription through the same 10-base-pair sequence. Proc. Natl. Acad. Sci. USA. 88:6580-6584. Okuyama, R., and S. Marshall. 2004. Potential regulation of nuclear UDP-N-acetylglucosaminyl transferase (OGT) by substrate availability: ability of chromatin protein to bind UDP-N-acetylglucosamine and reduce OGT-mediated O-Linked glycosylation. Biol. Pharm. Bull. 27:1293-1296. Peyron-Caso, E., S. Fluteau-Nadler, M. Kabir, M. Guerre-Millo, A. Quignard-Boulange, G. Slama, and S. W. Rizkalla. 2002. Regulation of glucose transport and transporter 4 (GLUT-4) in muscle and adipocytes of sucrose-fed rats: effects of N-3 poly- and monounsaturated fatty acids. Horm. Metab. Res. 34:360-366. Podolin, D. A., E. C. Gayles, Y. Wei, J. S. Thresher, and M. J. Pagliassotti. 1998. Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats. Am. J. Physiol. 274:R840-848. Quon, M. J. , M. Guerre-Millo, M. J. Zarnowski, A. J. Butte, M. Em, S. W. Cushman, and S. I. Taylor. 1994. Tyrosine kinase-deficient mutant human insulin receptors (Met1153-->Ile) overexpressed in transfected rat adipose cells fail to mediate translocation of epitope-tagged GLUT4. Proc. Natl. Acad. Sci. USA. 91:5587-5591. Rayner, D.V., M. E. Thomas, and P. Trayhurn. 1994. Glucose transporters (GLUTs 1-4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Can. J. Physiol. Pharmacol. 72:476-479. Reaven, G. M. 2005. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu. Rev. Nutr. 25:17.1-17.16. Ren, J. M., C. F. emenkovich, E. A. Gulve, J. Gao, and J. O. Holloszy. 1994. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J. Biol. Chem. 269:14396-14401. Rocca, A. S., J. LaGreca, J. Kalitsky, and P. L. Brubaker. 2001. Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology 142:1148-1155. Rondinone, C. M., L. M. Wang, P. Lonnroth, C. Wesslau, J. H. Pierce, and U. Smith. 1997. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA. 94:4171-4175. Ross, S. A., X. Chen, H. R. Hope, S. Sun, E. G. McMahon, K. Broschat, E. A. Gulve. 2000. Development and comparison of two 3T3-L1 adipocyte models of insulin resistance: increased glucose flux vs glucosamine treatment. Biochem. Biophys. Res. Commun. 273:1033-1041. Rossetti, L. 2000. Perspective: Hexosamines and nutrient sensing. Endocrinology 141:1922-1925. Ryan, M., D. McInerney, D. Owens, P. Collins, A. Johnson, and G. H. Tomkin. 2000. Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. Q. J. Med. 93:85-91. Sakai, J., E. A. Duncan, R. B. Rawson, X. Hua, M. S. Brown, and J. L. Goldstein. 1996. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85:1037-1046. Saltiel A. R., C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806. Scherer, P. E., S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270:26746-26749. Shepherd, P. R., L. Gnudi, E. Tozzo, H. Yang, F. Leach, and B. B. Kahn. 1993. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268:22243-22246. Shillabeer, G., J. M. Forden, and D. C. Lau. 1989. Induction of preadipocyte differentiation by mature fat cells in the rat. J. Clin. Invest. 84:381-387. Shimura, T., T. Miura, M. Usami, E. Ishihara, K. Tanigawa, H. Ishida, and Y. Seino. 1997. Docosahexanoic acid (DHA) improved glucose and lipid metabolism in KK-Ay mice with genetic non-insulin-dependent diabetes mellitus (NIDDM). Biol. Pharm. Bull. 20:507-510. Siscovick, D. S., T. Raghunathan, I. King, S. Weinmann, V. E. Bovbjerg, L. Kushi, L. A. Cobb, M. K. Copass, B. M. Psaty, R. Lemaitre, B. Retzlaff, and R. H. Knopp. 2000. Dietary intake of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. Am. J. Clin. Nutr. 71:208S-2012S. Soriguer, F., I. Esteva, G. Rojo-Martinez, M. S. Ruiz de Adana, M. C. Dobarganes, J. M. Garcia-Almeida, F. Tinahones, M. Beltran, S. Gonzalez-Romero, G. Olveira, and J. M. Gomez-Zumaquero. 2004. Oleic acid from cooking oils is associated with lower insulin resistance in the general population (Pizarra study). Eur. J. Endocrinol. 150:33-39. Spampinato, D., A. Giaccari, V. Trischitta, B. V. Costanzo, L. Morviducci, A. Buongiorno, U. Di Mario, R. Vigneri, and L. Frittitta. 2003. Rats that are made insulin resistant by glucosamine treatment have impaired skeletal muscle insulin receptor phosphorylation. Metabolism 52:1092-1095. Stenbit, A. E., T. S. Tsao, J. Li, R. Burcelin, D. L. Geenen, S. M. Factor, K. Houseknecht, E. B. Katz, and M. J. Charron. 1997. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat. Med. 3:1096-1101. Stephens, J. M. and P. F. Pilch. 1995. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr. Rev. 16:529-546. Stoll, B. A. 1998. Western nutrition and the insulin resistance syndrome: A link to breast cancer. Euro. J. Clin. Nutri. 53:83-87. Storlien, L. H., E. W. Kraegen, D. J. Chisholm, G. L. Ford, D. G. Bruce, and W. S. Pascoe. 1987. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237:885-888. Student, A. K., R. Y. Hsu, and M. D. Lane. 1980. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J. Biol. Chem. 255:4745-4750. Sun, X. J. , P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. 1991. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73-77. Suryawan, A. and C. Y. Hu. 1993. Effect of serum on differentiation of porcine adipose stromal-vascular cells in primary culture. Comp. Biochem. Physiol. Comp. Physiol. 105:485-492. Taha, C. and A. Klip. 1999. The insulin signaling pathway. J. Membr. Biol. 169:1-12. Thomson, M. J., M. G.Williams, and S. C. Frost. 1997. Development of insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 272:7759-7764. Traxinger, R. R. and S. Marshall. 1991. Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J. Biol. Chem. 266:10148-10154. Valverde, A. M., P. Navarro, T. Teruel, R. Conejo, M. Benito, and M. Lorenzo. 1999. Insulin and insulin-like growth factor I up-regulate GLUT4 gene expression in fetal brown adipocytes, in a phosphoinositide 3-kinase-dependent manner. Biochem. J. 337 ( Pt 3):397-405. Van Obberghen, E. 1994. Signalling through the insulin receptor and the insulin-like growth factor-I receptor. Diabetologia 37:S125-134. Wang, J., R. Liu, M. Hawkins, N. Barzilai, and L. Rossetti. 1998. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393:684-688. Watson, R. T., M. Kanzaki, J. E. Pessin. 2004. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr. Rev. 25:177-204. White, M. F. 1997. The insulin signalling system and the IRS protein. Diabetologia. 40:S2-S17 White, M. F. 1998. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182:3-11. White, M. F., R. Maron, and C. R. Kahn. 1985. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183-186. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M. L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, and T. Kadowaki. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7:941-946. Yamauchi, T., J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B. B. Kahn, and T . Kadowaki. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8:1288-1295. Yamauchi, T., K. Tobe, H. Tamemoto, K. Ueki, Y. Kaburagi, R. Yamamoto-Honda, Y. Takahashi, F. Yoshizawa, S. Aizawa, Y. Akanuma, N. Sonenberg, Y. Yazaki, and T. Kadowaki. 1996. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol. Cell. Biol. 16:3074-3084. Yeh, J. I., E. A. Gulve, L. Rameh, and M. J. Birnbaum. 1995. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J. Biol. Chem. 270:2107-2111. Yomonouchi, K., T. Shinozaki, K. Chikada, T. Nishikawa, K. Ito, S. Shimizu, N. Ozawa, Y. Suzuki, H. Maeno, and K Kato. 1995. Daily walking combined with diet therapy is a useful means for obese NIDDM patients not only to reduce body weight but also to improve insulin sensitivity. Diabetes care 18:775-778. Zhang, P., E. S. Klenk, M. A. Lazzaro, L. B. Williams, and R. V. Considine. 2002. Hexosamines regulate leptin production in 3T3-L1 adipocytes through transcriptional mechanisms. Endocrinology 143:99-106. Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36634 | - |
dc.description.abstract | 胰島素敏感性的下降時,葡萄糖運送子 4(glucose transporter 4, GLUT4)位於細胞膜濃度降低,導致細胞無法有效地利用葡萄糖。移動至細胞膜上則是經由 PI3-kinase pathway 來進行。
本研究的目的在建立大鼠脂肪細胞與脂肪前身細胞的初代培養環境,並研究營養分影響脂肪細胞胰島素抗性的發生。利用豬的脂肪前身細胞培養系統為基礎,已成功地建立大鼠脂肪細胞初代培養系統及脂肪前身細胞之分化系統。 添加 thiazolidinediones(TZD)、葡萄糖、葡萄糖胺(glucosamine)、油酸(oleic acid)及二十二碳六烯酸(docoxahexaenoic acid)等不同的營養分於 3T3-L1 脂肪細胞,以研究此等營養分對胰島素抗性的影響。3T3-L1 脂肪細胞分別培養於含有 5 mM 葡萄糖之 DMEM(Dulbecco’s Modified Eagle Medium),並添加 5% FBS(fetal bovine serum)做為胰島素來源及不同之營養分 48 小時。藉由測定培養液中的甘油含量,來比較 3T3-L1 脂肪細胞的解脂能力。 此外,我們偵測幾個參與 PI3-kinase pathway 的基因 mRNA 在細胞的表現量,分別是胰島素受體(insulin receptor, IR)、胰島素受體受質 1(insulin receptor substrate 1, IRS-1)、PI3-K及 GLUT4。試驗中亦檢測兩個脂肪細胞所分泌並參與能量平衡的蛋白質,瘦體素(leptin)及脂肪細胞結合素(adiponectin)其 mRNA 的表現量。此外,並利用西方點墨法測定細胞膜上含有的 GLUT4 蛋白質含量,用以評估 GLUT4 在各營養分刺激後位移的情形。 試驗中,TZD 的刺激顯著降低降低細胞培養液中甘油的含量,而葡萄糖的刺激則增加了甘油在培養液中的含量,顯示在體外培養的環境下,TZD 的刺激能增加胰島素抑制細胞解脂的能力,而高濃度的葡萄糖則降低了胰島素的功能。葡萄糖胺的刺激則增加了細胞膜上 GLUT4 的含量,但是葡萄糖胺是否能增加胰島素的功能仍須更進一步的試驗釐清。本試驗中,各營養分對參與 PI3-kinase pathway 的基因 mRNA 表現量並無顯著影響,然而除了葡萄糖胺之刺激對脂肪細胞結合素 mRNA 含量沒有影響,其餘營養分刺激,皆使脂肪細胞結合素 mRNA 含量上升。結果顯示,試驗中所使用之營養分藉由影響脂肪細胞結合素的表現而改變脂肪細胞的生理功能。 本試驗亦利用女貞子、紅景天、荔枝核、木香及朴子草等中草藥之萃取物處理脂肪細胞。結果發現,數種中草藥之萃取物對於脂肪細胞解脂能力及 GLUT4 在細胞膜上的含量,並無顯著之影響。其中利用紅景天萃取物培養脂肪細胞,會降低脂肪細胞中 IR、IRS-1 及 GLUT4 mRNA 的濃度,推測利用紅景天培養脂肪細胞,會藉由減少參與 PI3-kinase pathway 的各基因表現量,來降低 PI3-kinase pathway 中訊息的傳導。然而試驗中所使用之中草藥萃取物,參與 PI3-kinase pathway 的詳細機制仍待釐清。 | zh_TW |
dc.description.abstract | Type II diabetes accounts for 90 to 95% of diabetes patients. Muscle and adipose tissue in such individuals have a decreased insulin sensitivity. Decrease in insulin sensitivity reduces translocation of glucose transporter 4(GLUT4) protein to cell membrane upon insulin stimulation. Therefore, cells can not uptake glucose effectively. Insulin modulates animal physiology through a phosphatidylinositol-3-kinase pathway(PI3-kinase pathway) and a mitogen-activated protein kinase pathway(MAP-kinase pathway). The major regulation of GLUT4 translocation from intracellular vesicle to cell membrane is generated from PI3-kinase pathway.
The purpose of this study were to establish primary cell culture systems for rat adipocytes and preadipocytes and to study the effect of different nutrients on insulin sensitivity in rodent adipocytes. In the current study, thiazolidinedione(TZD), glucose, glucosamine(GlcN), oleic acid(OA), and docosahexaenoic acid(DHA)were used to treat 3T3-L1 adipocytes. 3T3-L1 adipocytes were incubated in DMEM containing 5 mM glucose plus 5% fetal bovine serum(FBS)as insulin source with different nutrients for 48 hours. Concentration of glycerol in the cultured medium was measured to evaluate the ability of lipolysis in 3T3-L1 adipocytes. In addition, we measured the mRNA concentrations of insulin receptor(IR), insulin receptor substrate 1(IRS-1), PI3-K and GLUT 4, genes that are participated in the PI3-kinase pathway. We also measured mRNA concentrations of adiponectin and leptin, two secretive proteins in adipocytes involving energy balance. Western blot was used to determine the concentration of GLUT4 protein on cell membrane in order to estimate the degree of GLUT4 translocation. In our study, TZD treatment significantly reduced the concentration of glycerol in cultured medium whereas glucose treatment increased the glycerol concentration, indicating that TZD may increase insulin function to reduce lipolysis and high concentration of glucose may reduce insulin function to increase lipolysis in vitro. GlcN treatment increased the GLUT4 protein level on the cell membrane. Whether GlcN can increase insulin function requires further experiment to demonstrate. TZD, glucose, OA and DHA increased the steady state adiponectin mRNA concentration suggesting that theses nutrients may influence cellular function though manipulating the expression of aiponectin. Several Chinese herbs extracts, Ligustri Fructus, Rhodiola, Lychee Seed, Costus Root, and India Abutilon were used to treat 3T3-L1 adipocytes. We found no significant effect for these herbs on lipolysis and GLUT4 protein concentration on the cell membrane. Rhodiola reduced IR, IRS1, and GLUT4 mRNA concentrations, suggesting that Rhodiola may downregulate the PI3-kinase pathway signal transduction by reducing the mRNA concentrations of the genes involved in this pathway. However, the mechanism of these herbs extracts on PI3-kianse pathway in adipocytes requires further demonstration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:08:46Z (GMT). No. of bitstreams: 1 ntu-94-R91626003-1.pdf: 1377434 bytes, checksum: b7a4cc523e619b4e61bf789b555357ca (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄 Ⅰ
表次 Ⅱ 圖次 Ⅲ 附錄 Ⅳ 中文摘要 1 文獻檢討 3 材料與方法 18 結果與討論 32 結論 62 參考文獻 63 英文摘要 72 作者小傳 74 | |
dc.language.iso | zh-TW | |
dc.title | 不同營養分對3T3-L1脂肪細胞胰島素敏感性之影響 | zh_TW |
dc.title | The effect of different nutrients on insulin sensitivity in 3T3-L1 adipocytes | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林美峰(Mei-Fong Lin),歐柏榮,陳珠亮(Chu-Liang Chen) | |
dc.subject.keyword | 脂肪細胞,胰島素敏感性, | zh_TW |
dc.subject.keyword | adipocytes,insulin sensitivity, | en |
dc.relation.page | 87 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 畜產學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。