請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36613
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐源泰(Yuan-Tay Shyu) | |
dc.contributor.author | Chang Chai Ng | en |
dc.contributor.author | 吳展才 | zh_TW |
dc.date.accessioned | 2021-06-13T08:07:51Z | - |
dc.date.available | 2005-07-26 | |
dc.date.copyright | 2005-07-26 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-21 | |
dc.identifier.citation | 余旭勝。2001。微生物多樣性指標在加速分解蔬菜加工廢棄物處理應用上之研究。國立臺灣大學園藝學研究所碩士論文。
吉村和久、井倉洋二、高橋恆太、陳元陽、劉慶男、陳孟江。1996。太魯閣谷中石灰岩地帶之石灰華。太魯閣國家公園管理處。 陳懋彥。2002。台灣地區嗜熱性細菌之研究。國立台灣大學植物學研究所博士論文。 楊遠波。2004。太魯閣國家公園高山地區植物資源及基礎調查研究。太魯閣國家公園研究計畫。pp. 1-2。 竇光宇。陌生而誘人之生物礁。海洋世界。1999 年第 9 期。 Amann, R. I., Binder, B. J, Olson, R. J, Chisholm, S. W., Devereux, R. and Stahl, D. A. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919–1925. Amann, R. I., Ludwing, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169. Andren, O. and Balandreau, J. 1999. Biodiversity and soil functioning – from black box to can of worms? Appl. Soil Ecol. 13: 105-108. Anthony, O. and Heike, G. 1999. 16S rDNA methods in soil microbiology. Curr. Opinion in Biotech. 10: 225-229. Anwar, R. and Saleemuddin, M. 1998. Alkaline proteases: a review. Bioresour. Technol. 64: 175-183. Arahal, D. R., Floyd, E. D., Bruce, J. P., Benjamin, E. V. and Antonio, V. 1996. Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl. Environ. Microbiol. 62: 349 3779-3786. Atomi, H. 2005. Recent progress towards the application of hyperthermophiles and their enzymes. Curr. Opinion in Chem. Biol. 9: 166-173. Barns, S. M., Delwiche, C. F., Palmer J. D. and Pace, N. R. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93: 9188-9193. Barns, S. M., Ruth, E. F., Matthew, W. J. and Pace, N. R 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609-1613. Bertoldo, C. and Antranikian. G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opinion in Chem. Biol. 6:151-160. Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G. P. and Goodman, R. M. 1997. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94: 277-282. Blöchl, E., Rachel, R. Burggraf, S, Hafenbradl, D., Jannasch, H. W. and Stetter, K. O. 1997. Extremophiles 1: 14-21. Boivin-Jahns, V., Bianchi, A., Ruimy, R., Garcin, J., Daumas, S. and Christen, R. 1995. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl. Environ. Microbiol. 61: 3400-3406. Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. New York, Springer-Verlag. Brown, S. H., Kelly, R. M. 1993. Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol. 59: 2614-2621. Buchardt, B., Seaman, P., Stockmann, G., Vous, M., Wilken, U., Düwel, L., Kristiansen, Aa, Jenner, C., Whiticar, M. J., Kristensen, R. M., Petersen, G. H., and Thorbjørn, L. 1997. Submarine columns of ikaite tufa. Nature 390: 129-130. Bult, C. J., White, O., Olsen,G. J., Zhou, L., Fleischmann,R. D., Sutton,G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. D., Geoghagen, N. S., Weidman, J. F., Fuhrmann, J. L., Nguyen, D. T., Utterback, T., Kelley, J. M., Peterson, J. D., Sadow, P. W., Hanna, M. C., Cotton, M. D., Hurst, M. A., Roberts, K. M., Kaine, B. B., Borodovsky, M., Klenk, H. P., Fraser, C. M., Smith, H. O., Woese, C. R. and Venter, J. C. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058-1073. Cavigelli, M., Robertson, G., Klug, M., 1995. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170: 99-113. Christensen, H., Michael, H. and Jan, S. 1999. Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Environ. Microbiol. 65: 1753-1761. Connor, E. M. and Shand, R. F. 2002. Halocins and sulfolobicins: The emerging of story of archaeal protein and peptide antibiotics. J. Industrial Microbiol. Biotech. 28: 23-31. Copeland, H. F. 1938. The kingdoms of organisms. Quarterly Rev. Biol. 13: 383-420. Costantino, H. R., Brown, S. H. and Kelly, R. M. 1990. Purification and characterization of an α-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 °C. J. Bacteriol. 172: 3654-3660. Cowen, R. 1988. The role of algal symbiosis in reefs through time. Palaios 3: 221-227. Cowling, A. J. and Smith, H. G. 1987. Protozoa in the microbial communities of maritime Antarctic fellfields. In Colloque sur les Ecosystèmes Terrestres Subantarctiques. Comité National Francais des Recherches Antarctiques, Paimpont 1986. pp. 205-213. Curtis, T. P. and William T. S. 2004. Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr. Opinion in Microbiol. 7: 221- 226. Delong, E. F., Lance, T. T., Terence, L. M. and Christina, M. P. 1999. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl. Environ. Microbiol. 65: 5554-5563. Delong, E. F., Wu, K. Y., Prezelin, B. B. and Jovine, R. V. M. 1994. High abundance of archaea in Antarctic marine picoplankton. Nature 371: 695-697. Detmers, J., Strauss, H., Schulte, U., Bergmann, A., Knittel, K. and Kuever, J. 2004. FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing Bacteria in a Pristine Aquifer. Microb. Ecol. 47: 236–242 Dias, A. J. B., Maia, M. S., Retamal, C. A. and Lopez, M. L. 2004. Identification and partial characterization of α-1,4-glucosidase activity in equine epididymal fluid. Theriogenol. 61: 1545-1558. Domingo, S., Kaufman, J. W., Klug, M. G., Holben, M. J. Harris, W. E. and Tiedje, J. M. 1998. Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol. Ecol. 7: 761-767. Duckworth, A. W., Grant, W. D., Jones, B. E., and Van Steenbergen, R. 1996 Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol. 19: 181-191. Dunbar, J., Shannon, T., Susan, M. B., Jody, A. D. and Cheryl, R. K. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662-1669. Eder, K. 1995. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatography B 671: 113-131. Eichler, J. 2001. Biotechnological uses of archaeal extremozymes. Biotech. Adv. 19: 261-278. Federle, T.W. 1986. Microbial distribution in soil - new techniques. In: Perspective in Microbial Ecology (Eds. F . Megusar and M. Gantar) pp. 493-498. Slovene Society for Microbiology, Ljubljana. Fernandez-Castillo, R. F., Rodriguez-Valera, F., Gonzalez-Ramos, J. and Riuz-Berraquero, F. 1986. Accumulation of poly (beta-hydroxybutyrate) by halobacteria. Appl. Environ. Microbiol. 51: 214-216. Ferris, M. J., Ruff-Roberts, A. L., Kopczynski, E. D., Bateson, M. M. and Ward, D. M. 1996 Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl. Environ. Microbiol. 62:1045-1050. Ferris, M. J. and Ward, D. 1997. Seasonal distribution of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381. Forterre, P. 1996. A hot topic: the origin of hyperthermophile. Cell 85: 789-792. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J, Zablen, L. B. Blakemore, R., Gupta, R., Bonen, L. Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N. and Woese, C. R. 1980. The phylogeny of prokaryotes. Science 209: 457-463. Fuellen, G., Michael, S., Paul, C. and Stefan, L. 2003. BLASTing Proteomes, Yielding Phylogenies. In Silico Biology 3: 313-319. Fuhrman, J. A., McCallum, K. and Davis, A. A. 1992. Novel marine archaebacterial group from marine plankton. Nature 356: 148-149. Fukumori, F., Kudo, T. and Sashihara, N. 1989. The third cellulase of alkaliphilic Bacillus sp. strain N-4: Evolutionary relationships within the cell gene family. Gene 76: 289-298. Garland, J. L. and Mills, A. L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57: 2351-2359. Giuliano, M., Schiraldi, C., Marotta, M. R., Hugenholtz, J. and De Rosa, M. 2004. Expression of Sulfolobus solfataricus α-glucosidase in Lactobacillus lactis. Appl. Microbiol. Biotechnol. 64: 829-832. Godfray, H. C. J. and Lawton, J. H., 2001. Scale and species numbers. TREE 16: 400-404. Guckert, J. B., Gregory, J. C., Troy, D. J., Burt, G. H., Daniel, H. D. and Yoshiharu, K. 1996. Community analysis by BIOLOG: curve integration for statistical analysis of activated sludge microbial habitats. J. Microbiol. Methods 27: 183-197. Grant, W. D. 1991. General view of halophiles. In Superbugs: microorganisms in extreme environments (Eds. K. Horikoshi and W. D. Grant), pp. 15-37. Japan Scientific Societies Press, Tokyo. Grant, W. D. 1992. Alkaline environments. In Enclyclopedia of Microbiology (ed J. Lederberg) pp. 73-80. Vol. 1, Academic Press, London. Greene, E. A. and Gerrit, V. 2003. Analysis of environmental microbial communities by reverse sample genome probing. J. Microbiol. Methods 211-219. Grogan, D., Palm, P. and Zillig, W. 1990. Isolate B12, which harbors a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch. Microbiol. 154: 594-599. Haeckel, E. 1866. Generelle Morphologie der Organismen. Reimer, Berlin. Haki, G. D. and Rakshit, S. K. 2003. Developments in industrially important thermostable enzymes: a review. Bioresource Technol. 89: 17-34. Herr, D. 1979. Secretion of cellulose and beta-glucosidase by Trichoderma virde ITCC-1433 in submerged culture on different substrates. Biotech. Bioeng. 21: 1361-1371. Hershberger, K. L., Barns, S. M., Reysenbach, A., Dawson, S. C. and Pace, N. R. 1996. Wide diversity of Crenarchaeota. Nature 384: 420-423. Heuer, H. and Kornelia, S. 1997. Evaluation of community-level catabolic profiling using BIOLOG GN microplates to study microbial community changes in potato phyllosphere. J. Microbiol. Methods 30: 49-61. Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. Hitzl, W., Andrea, R., Shobha, S. and Heribert, I. 1997. Separation power of the 95 substrates of the BIOLOG system determined in various soils. 1997. FEMS Microbiol. Ecol. 22: 167-174. Horikoshi, K. 1971. Production of alkaline enzymes by alkaliphilic microorganisms. Part I: Alkaline protease produced by Bacillus No. 221. Agric. Biol. Chem. 35: 1407-1414. Horikoshi, K. 1991a. General view of alkalophiles and thermophiles. In Superbugs: Microorganisms in Extreme Environments. pp. 3-14. Springer, Berlin. Horikoshi, K. 1991b. Microorganisms in Alkaline Environments. VCH, New York. Horikoshi, K. and Akiba, T. 1982. In Alkaliphilic Microorganisms: A New Microbial World. Japan Scientific Societies Press. Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C. and Stetter, K. O. 2002. A new phylum of Archaea represented by a nanosized hyperthermo- philic symbiont. Nature 417: 63-67. Ibekwe, A. M. and Kennedy, A. C. 1999. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil 206: 151-161. Ibekwe, A. M., Kennedy, A. C., Frohne, P. S., Papiernik, S. K., Yang, C. H. and Crowley, D. E. 2002. Microbial diversity along a transect of agronomic zones. FEMS Microbiol. Ecol. 39: 183-191. Ito, S., Shikata, S. and Ozaki, K. 1989. Alkaline cellulase for laundry detergents: Production by Bacillus sp. KSM-635 and enzymatic properties. Agric. Biol. Chem. 53: 1275-1281. Itoh, T., Suzuki, K., Sanchez, P. C. and Nakase, T. 2003. Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int. J. Syst. Evol. Microbiol 53: 1149-1154. Jackson, C. R., Langner, H. W., Donahoe, C. J., Inskeep, W. P. and McDermott, T. R. 2001. Molecular analysis of microbial community structure in an arsenite- oxidizing acidic thermal spring. Environ. Microbiol. 3: 532-542. Jaenicke, R. and Bohm, G. 1998. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8: 738-748. Jan, R. L., Jeffrey, W., Chaw, S. M., Tsai, C. W. and Tsen, S. D. 1999. A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int. J. Syst. Bacteriol. 49: 1809-1816. Jones, B. E., Grant, W. D., Duckworth, A. W. and Owenson, G. G. 1998. Microbial diversity of soda lakes. Extremophiles 2: 191-200. Kristiansen, J. and Kristiansen, A. 1999. A new species of Chroomonas (Cryptophycae) living inside the submarine ikaite columns in the Ikkafjord, South-west Greenland, with remarks on its ultrastructure and ecology. Nord. J. Bot. 19: 747-758. Kaiser, S. K., Guckert, J. B. and Gledhill, D. W. 1998. Comparison of activated sludge microbial communities using BIOLOG® microplates. Water Sci. Tech. 37: 57- 63. Kato, C. 1997. Deep-sea animals living at world's deepest bottom at Mariana Trench Challenger Deep, depth of 11000 m. Umi-ushi Letter 14: 12 (in Japanese). Kirk, L. J., Lee, A. B., Miranda, H., Peter, M., John, N. K., Hung, L. and Jack, T. T. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods 58: 169-188. Kjems, J., Larsen, N., Dalgaard, J. S., Garrett, R. A. and Stetter, K. O. 1992. Phylogenetic relationships amongst the hyperthermophilic Archaea determined from partial 23S rRNA gene sequences. Syst. Appl. Microbiol. 15: 203-208. Klenk, H. P, Clayton, R. A., Tomb, J. F., White, O., Nelson, K. E, Ketchum, K. A., Dodson, R. J., Gwinn, M., Hickey, E. K, Peterson, J. D., Richardson, D. L., Kerlavage, A. R., Graham, D. E., Kyrpides, N. C., Fleischmann, R. D., Quackenbush, J., Lee, N. H., Sutton, G. G., Gill, S., Kirkness, E. F., Dougherty, B. A., McKenney, K., Adams, M. D., Loftus, B., Peterson, S., Reich, C. I., McNeil, L. K., Badger, J. H., Glodek, A., Zhou, L., Overbeek, R., Gocayne, J. D., Weidman, J. F., McDonald, L., Utterback, T., Cotton, M. D., Spriggs, T., Artiach, P., Kaine, B. P., Sykes, S. M., Sadow, P. W., D'Andrea, K. P., Bowman, C., Fujii, C., Garland, S. A., Mason, T. M., Olsen, G. J., Fraser, C. M., Smith, H. O., Woese, C. R., Venter, J. C. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364-370. Klenk, H. P., Spitzer, M., Ochsenreiter, T. and Fuellen, G. 2003. Phylogenomics of hyperthermophilic Archaea and Bacteria. Biochem. Soc. Trans. 32: 175-178. Knapp, C. W. and David, W. G. 2004. Development of alternate ssu rRNA probing strategies characterizing aquatic microbial communities. Journal of Microb. Methods 56: 323–330. Lehman, R. M., Colwell, F. S., Ringelberg, D. B. and White, D. C. 1995. Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J. Microbiol. Methods 22: 263-281. Léveque, E., Janecek, S., Haye, B., and Belarbi, A. 1999. Thermophilic archaeal amylolytic enzymes. Enz. Microbiol. Technol. 26: 3-14. Liesack, W. and Stackebrandt, E. 1992. Occurrence of a novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174: 5072-5087. Linnaeus, C. 1735. Systema naturae sive regna tria naturae systematice proposita per classes, ordines, genera, and species. Haak, Levden. Llobet-Brossa, E., Rosselló-Mora, R. and Amann, R. 1998. Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization Appl. Environ. Microbiol. 64: 2691-2696. Lucas, P. H., Webb, T., Valentine, P. S. and Marsh, H. 1997. The Outstanding Universal Value of the Great Barrier Reef World Heritage Area, Great Barrier Reef. Marine Park Authority, Townsville, Qld. Ludwig, J. A., and Reynold, J. F. 1988. In Statistical Ecology. pp. 85-103. Wiley, New York. MacDonald, R., Brozel, V. S., 2000. Community analysis of bacterial biofilms in a simulated recirculating cooling-water system by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes. Water Research 34: 2439-2446. MacDouglad, D., Rice, S. A.,Weichart, D. and Kjelleberg, S. 1998. Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 25: 1-9. Margulis, L. 1968. Evolutionary criteria in thallophytes: a radical alternative. Science 161:1020-1022. McInerney, J. O., Wilkinson, M., Patching, J. W., Embley, T. M. and Powell, R. 1995. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl. Environ. Microbiol. 61: 1646-1648. Millar, W. N. and Cassida, L. E. 1970. Evidence for muramic acid in soil. Can J Microbiol. 16: 299-304. Miller, D. N., Bryant, J. E., Madsen, E. L. and Ghiorse, W. C. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment sample. Appl. Environ. Microbiol. 65: 4715-4724. Moyer, C. L., Tiedje, J. M. Dobbs, F. C. and Karl, D. M. 1996 computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl. Environ. Microbiol. 62: 2501-2507. Nigam, P. and Singh, D. 1995. Enzyme and microbial system involved in starch processing. Enz. Microb. Technol. 17: 770-778. Norio, K., Yuko, H. I., Toshie, I., Akihiko, S., Ikuko, U., Naohiro, K., Tadao, H. and Toshihiro, I. 1998. Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int. J. Syst. Bacteriol. 48: 451-456. O’ Connell S. P., and Garland J. L. 2002. Dissimilar response of microbial communities in Biolog GN and GN2 plates. Soil Biol. Biochem. 34: 413-416. Oda, Y., Slagman, S. J., Meijer, W. G., Forney, L. J. and Gottschal, J. C. 2000 Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris. FEMS Microbiol. Ecol. 32: 205- 213. Omura, S. 1992. Trends in the search for bioactive microbial metabolites. J. Ind. Microbiol. 10: 135-156. Palmer, R. J. and Friedmann, E. I. 1990. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microbial Ecol. 19: 111-118. Patel, G. B. and Sprott, G. D. 1999. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Critical Rev. Biotech. 194: 317-357. Pernthaler, A., Christina, M. P., Jacob, P., Edward, F. D. and Amann, R. 2002 Comparison of fluorescently labelled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl. Environ. Microbiol. 68: 661-667. Piller, K., Daniel, R. M., Petach, H. H. 1996. Properties and stabilization of an extracellular α-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: enzyme activity at 130 °C. Biochem. Biophys. Acta. 1292: 197-205. Poppert, S., Andreas, E., Reinhard, M., Michael, W. and Matthias, H. 2002 Detection and differentiation of Chlamydiae by fluorescence in situ hybridization. Appl. Environ. Microbiol. 68: 4081–4089. Porter, J., Daniel, D., Melanie, H., Clive, E. and Roger, P. 1997. Go with the flow- use of flow cytometry in environmental microbiology. FEMS Microbiol. Ecol. 24: 93-101. Pratt, B. R. 1982. Stromatolitic framework of carbonate mudmounds. J. Sediment. Petrol. 52: 1203-1227. Pratt, B. R. 1995. The origin, biota and evolution of deep-water mud-mounds. In Carbonate Mud-Mounds, Their Origin and Evolution (Eds. C.L.V., Monty, D. W.J. Bosence, P. H. Bridges, B. R. Pratt). pp. 49-123. Spec. Publ. Int. Assoc. Sedimentol. Tulsa. Prosser, J. I., 2002. Molecular and functional microorganisms. Plant Soil 244: 9-17. Ratledge, C. and Wilkinson, S. G. 1988. Microbial Lipids. Academic Press, New York. Reeve, J. N., Nolling, J., Morgan, R. M. Smith, D. R. 1997. Methanogenesis: genes, genomes, and who’s on first? J. Bacteriol. 179: 5975-5986. Riding, R. 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Rev. 58: 163-231. Rodriguez-Valera, F. 1992.. Biotechnological potential of halobacteria. Biochem. Soc. Symp 58: 135-147. Rolfsmeier, M., Blum, P. 1995. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J. Bacteriol. 177: 482-485. Rondon, M. R., Goodman, R. M. and Handelsman, J. 1999. The earth’s bounty: assessing and accessing soil microbial diversity. Trends in Biotechnol. 17: 403-409. Rothschild, L. J. and Mancinelli, R. L. 2001. Life in extreme environments. Nature 409: 1092-1101. Ruzicka, S. D., Norman, E. M. and Hill, T. 2000. The utility of ergosterol as a bioindicator of fungi in temperate soils. Soil Biol. Biochem. 32: 989-1005. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Tech. Note no. 101. Microbial ID, Newark, DE. Schleper, C., Pühler, G., Kühlmorgen, B. and Zillig, W. 1995. Life at extremely low pH. Nature. 375: 741-742. Schloter, M., Assmus, B. and Hartmann, A. 1995 The use of immunological methods to detect and identify bacteria in the environment. Biotech. Adv. 13: 75-90. Schutter, M. E., Dick, R.P., 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64: 1659-1668. Schutter, M. and Richard, D. 2001. Shift in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol. Biochem. 33: 1481-1491. Seckbach, J. 1994. Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells. In Developments in Hydrobiology (Ed J. Seckbach). pp. 349. Dordrecht: Kluwer Academic Publishers. Segerer, A. H., Burggraf, S., Fiala, G., Huber, G., Huber, R., Pley, U. and Stetter, K. O. 1993. Life in hot springs and hydrothermal vents. Orig. Life Evol. Biosph. 23: 77-90. Smith, N. C. and Stribley, D. L. 1994. A new approach to direct extraction of microorganisms from soil. In Beyond the Biomass. (Eds. Ritz, K. Ritz, J. Dighton, K. E. Giller). pp. 49-55. Wiley, Chichester. Snaidr, J., Rudolf, A., Ingrid, H., Wolfgang, L. and Karl-Heinz, S. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63: 2884-2896. Sørensen, M. V., and Kristensen, R. M. 2000. Marine rotifera from Ikka Fjord, SW Greenland. With a Description of a New Species from the Rare Mineral Ikaite. Meddelelser om Grønland, Biosci. 51: 1-46. Stackebrandt, E, Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J. Syst. Bacteriol. 44: 846-849. Steger, K., Jarvis, Å. Smårs, S. and Sundh, I. 2003. Comparison of signature lipid methods to determine microbial community structure in compost. J. Microbiol.l Methods 55: 371-382. Stetter, K. O. 1996. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18: 149-158. Steytr, U. B., Plum, D, Sara, M. 1997. Advances in S-layer nanotechnology and biomimetics. Adv. Biophys. 34: 71-79. Stokes, H. W., Holmes, A. J., Nield, B. S., Holley, M. P., Nevalainen, K. M., Mabbutt, B. C., Gillings, M. R. 2001. Gene cassette PCR: sequence- independent recovery of entire genes from environmental DNA. Appl. Environ. Microbiol. 67: 5240-5246. Stotzky, G. 1997. Soil as an environment for microbial life. In Modern Soil Microbiology. (eds. J. D. Van Elsas, J. T. Trevors, E. M. H. Wellington) pp. 1-20. Marcel Dekker, New York. Stougaard, P., Jørgensen, F. Johnsen, M. G. and Hansen, O. C. 2002. Microbial diversity in ikaite tufa columns: an alkaline, cold ecological niche in Greenland. Environ. Microbiol. 4: 487-493. Suzuki, T., Toshio, I., Taketoshi, U., Kurt, H., Naoki, N., Takahide, K., Toshiaki, U., Akihiko, Y. and Tairo, O. 2002. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6: 39-44. Takai, K. and Horikoshi, K. 1999. Genetic diversity of archaea in deep-sea hydrothermal vent. Environ. Genetics. 152: 1285-1297. Takami, H., Akiba, T. and Horikoshi, A. 1990. Characterization of an alkaline protease from Bacillus sp. No. AH-101. Appl. Microbiol. Biotechnol. 33: 519-523. Takasi, I. 2003. Taxonomy of non-methanogenic hyperthermophilic and related thermophilic archaea. J. Biosci. Bioeng. 96: 203-212. Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugai, A., Ito, T., Yamasato, K. and Shioda, M. 1996. Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int. J. Syst. Bacteriol. 46: 377-382. Thomas, P., Curtis, T. P. and William, T. S. 2004. Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr. Opinion in Microbiol. 7: 221-226. Todo, Y., Hiroshi, K., Jun, H. and Andrew, J. G. 2005. Simple foraminifera flourish at the ocean’s deepest point. Science 307: 689. Torsvik, V., Goksoyr, J. and Daae, F. L. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782-787. Torsvik, V. and Lise, Ø. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opinion in Microbiol. 5: 240-245. Venter, J. C., Karin, R., John, F. H., Aaron, L. H., Doug, R., Jonathan, A. E., Dongying Wu, Ian P., Karen E. N., William, N., Derrick, E. F., Samuel, L., Anthony, H. K., Michael W. L., Ken N., Owen, White., Jeremy, P., Jeff, H., Rachel, P., Holly, B. T., Cynthia, P., Yu-Hui, R. and Hamilton, O. S. 2004. Environmental genome shotgun sequencing of the Sargasso sea. Science 304: 66-74. Ward, D. M., Bateson, M. M., Weller, R. and Ruff-Roberts, A. L. 1992. Ribosomal rRNA analysis of microorganisms as they occur in Nature. Adv. Microbiol. Ecol. 12: 219-286. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Murry, R. G. E., Stackebrant, E., Starr, M. P. and Truper, H. G. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464. Webb, G. E. 1996. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonates and biologically induced cement)? Sedimentol. 43: 947-971. White, D. C. 1983. Analysis of microorganisms in terms of quantity and activity in natural environments. Soc. Gen. Microbial. Symp. 34: 37-66. White, D. C. and Frerman, F. E. 1968. Fatty acid composition of the complex lipids of Staphylococcus aureus during the formation of the membrane-bound electron transport system. J. Bacteriol. 95: 2190-2209. Whittaker, R. H. 1969. New concepts of kingdoms of organisms. Science 163:150-160. Wilkinson, S. G. 1988. Gram-negative bacteria. In Microbial Lipids, Vol. 1. (Eds C. Ratledge, and S. G. Wilkinson), pp. 299-488. Academic Press, London. William, P. J. L. and Askew, C. 1968. A method of measuring the mineralization by microorganisms of organic compounds in sea water. Deep sea Res. 15: 365-375. Winding, A., Binnerup, S. J. and Sorensen, J. 1994. Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl. Environ. Microbiol. 60: 2869- 2875. Wintzingerode, F. V., Gobel, U. B. and Stackebrandt, E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213- 229. Woese, C. R. 1993. The Archaea: their history and significance, vii-xxviii. In The Biochemistry of Archaea (Archaebacteria) (eds. M. Kates et al.). Elsevier Science Publishers. Woese, C. R., Kandler, O. and Wheelis, M. L. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576-4579. Wolosowska, S. and Synowiecki, J. 2004. Thermostable β-glucosidase with broad substrate specifity suitable for processing of lacose-containing products. Food Chemistry 85: 181-187. Wuensche, L., Lutz, B. and Wolfgang, B. 1995. Determination of substrate utilization patterns of soil microbial communities: An approach to assess population changes after hydrocarbon pollution. FEMS Microbiol. Ecol. 17: 295-306. Xiang, X. Y., Dong, X. Z. and Li, H. 2003. Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China. Extremophiles 7: 493-498. Yasindi, A. W., Lynn, D. H. and Taylor, W. D 2002. Ciliated protozoa in lake Nakuru, a shallow alkaline-saline lake in Kenya: Seasonal variation, potential production and role in the food web. Arch. Hydrobiol. 154: 311-325. Zarda, B., Dittmar, H., Antonis, C., Wilhelm, S., Alexander, N., Rudolf, A. and Josef, Z. 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch. Microbiol. 168: 185-192. Zelles, L. and Alef, K. 1995. Biomarkers. In Methods in applied soil microbiology and biochemistry. (eds. K. Alef and P. Nannipieri) pp. 422-439. Academic Press, London. Zillig, W., Stetter, K. O., Schafer, W., Janekovic, D., Wunderl, S., Holz, J. and Palm, P. 1981. Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Islandic solfataras. Zbl. Bakt. Hyg., I. Abt., Orig. C2: 205-227. Zhou, J. Z. 2003. Microarrays for bacterial detection and microbial community analysis. Curr. Opinion in Microbiol. 6: 288-294. Zuckerkandl, E. and Pauling, L. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8: 357-366. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36613 | - |
dc.description.abstract | 本研究第一部分為利用16S rRNA之序列演化和螢光原位雜交技術 (fluorescence in situ hybridization, FISH) 針對陽明山馬槽之露頭溫泉樣本進行分析。經由電腦模擬得出最適切位之 AciI, BstUI 和 RsaI三個限制酵素,192個16S rRNA clone經由 RFLP 得出九個分群。經由資料庫比對搜尋,發現其中clone M70和M6和古生菌 Crenarchaeota 門當中之Sulfolobus和Caldisphaera 相似度最大。其他之分群亦分別和資料庫當中分佈在東北亞區域熱泉或嗜熱極地環境uncultured 或 unidentified之古生菌有高度之序列相似度,顯示台灣和日本、中國和菲律賓等地之極地環境當中微生物族群狀況之相似性。在 FISH 的部分,土壤和水樣利用DAPI (4’, 6-diamidino-2-phenylindole) 和螢光標定之ARCH915, EUB338, EUK516 和 SRB385針對古生菌、真細菌、真核生物和嗜硫菌之專一性引子進行雜交,於螢光顯微鏡下觀察結果顯示分別有15.69 % 和 7.16 % 之 DAPI-stained cell可和 ARC915 和 SRB385進行雜交,顯示本區域存在相當豐富之極域微生物。第二部分為分析太魯閣峽谷內三個地點長春祠、白楊步道外及燕子口三種石灰華樣品微生物。從微生物多樣性分析,結果為長春祠、白楊步道外及燕子口三者之多樣性分別為 0.808,0.864,0.866,均勻度為 0.768,0.9,0.916,顯示長春祠的石灰華微生物多樣性最低。分析 381個16S rRNA clone,Proteobacteria 在三個石灰華樣本中之微生物中佔有25–30 %;第二多的微生物則是光合細菌,佔有16–28 %。另外最常在三個樣本中出現的菌相有 Acidobacteria, agricultural soil bacterium, verrucomicrobia 和 firmicutes等。第三部分自馬槽溫泉區分離株 #33-9選殖出α-glucosidase 並以市售套組表現蛋白質。以SDS-PAGE 顯示其為一分子量約 60 kD之蛋白質。另取 100 ul 之蛋白質產品以 p-nitrophenyl glucopyranoside 分析其活性,發現其最佳作用溫度為 60–70 °C,最高活性介於 pH 2–3。 | zh_TW |
dc.description.abstract | The using of molecular methods has advanced our visions on environmental microbiology in recent years. Numerous breakthroughs and discoveries have been made on microbial community, ecological revolution, bio-adaptation and genetics bio-resources in extreme environments. In the first part of this study, archaeal community composition of Yangmingshan National Park was investigated by 16S rRNA and fluorescence in situ hybridization (FISH). Tetrameric restriction enzyme (TRE) was used in digestion and differentiation in the restriction fragment length polymorphism (RFLP) fragments, and AciI, BstUI and RsaI were shown to be the optimal TREs for TRE-RFLP. Nine clones were obtained in the studies, with clones M70 and M6 being found to be phylogenetically affiliated to Sulfolobus and Caldisphaera in domain Crenarchaeota, respectively, whereas seven other clones were found to be affiliated to uncultured and unidentified archaeon isolated from thermoacidic environments. Using FISH, soil and water region cells were hybridized with DAPI (4’, 6-diamidino-2-phenylindole) and specific fluorescently labeled probes. 15.69 % and 7.16 % of the DAPI-stained cells hybridized with universal archaeal probe ARC915 and sulfate-reducing bacterial probe SRB385, respectively.
In second part, microbial diversity of tufa found in Taroko National Park was investigated using 16S rRNA cloning and FISH. Diversity index of Eternal Spring Shrine, Baiyang walkway and the Swallow valley showed to be 0.808, 0.864 and 0.866, respectively. The Evenness index also showed 0.768, 0.9 and 0.916 at those three sites. This implied low microbial diversity in E. S. Shrine. Eleven 16S rRNA phylotypes and 37 genus and group of bacteria were identified. Of total 381 clones isolated, proteobacteria occupied 25–30 % whereas cyanobacteria dominated 16–28 % in total microbial population of above three sites. Acidobacteria, agricultural soil bacterium, verrucomicrobia and firmicutes were generally distributed in these sampling sites. In the third part, α-glucosidase was cloned from isolate #33-9 and the protein was expressed using commercial cell-free transcription and translation kit. The molecular weight of the translated product is approximately 60 kD as shown by SDS-PAGE. The product was assayed for activity using p-nitrophenyl-glucopyranoside. The optimum temperature and pH for the enzyme were shown to be 60–70 °C and 2–3, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:07:51Z (GMT). No. of bitstreams: 1 ntu-94-D90628004-1.pdf: 4834627 bytes, checksum: 75b9abc49014ce9a3973211118214157 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要....................... 1
Abstract....................... 2 第一章 研究背景與動機................. 4 第一節 生命形式的分類................ 4 第二節 土壤微生物多樣性............... 4 第三節 極端微生物.................. 6 一、真核極端微生物.............. 6 二、原核極端微生物................ 7 第四節 古生菌的遺傳譜系分類..............8 第五節 分生技術應用於環境微生物生態調查...... 10 第六節 研究動機................ 13 第二章 以16s rRNA和螢光原位雜交探討陽明山國家公園溫泉區之 古細菌族群之多樣性............. 22 第一節 本區域之古生菌研究............... 22 一、生物多樣性指標................22 第二節 材料與方法.................. 23 一、樣本採樣...................23 二、藥品.....................23 三、儀器設備與套組................24 四、方法.....................25 第三節 結果..................... 27 一、土壤樣本...................27 二、轉型株確認和 RFLP.............. 27 三、遺傳演化樹狀圖之建構 ............ 27 四、本區域古生菌之多樣性指標.......... 28 五、螢光原位雜交.................28 第三章 太魯閣國家公園石灰華區微生物多樣性之調查... 45 第一節 太魯閣國家公園................ 45 一、石灰岩和石灰華之形成.................45 二、研究之未來應用潛力..................46 第二節 材料與方法.................. 47 一、儀器設備與套組................47 二、16S rRNA之擴增和選殖.............48 三、定序、資料庫比對、多樣性指數計算...... 48 四、螢光原位雜交.................48 第三節 結果 .................... 49 一、採樣地點之說明................49 二、採樣點的選擇及石灰華的特性......... 49 三、石灰華之微生物相.............. 50 四、石灰華之微生物多樣性指標...........51 五、螢光原位雜交.................52 第四章 陽明山國家公園溫泉區之微生物族群生物資源之開發利用 69 第一節 極端酵素之開發應用.............. 69 第二節 材料與方法..................70 一、材料.................... 70 二、菌種分離...................70 三、澱粉酵素平板分析...............71 四、自分離株中選殖 α-glucosidase 基因......71 五、利用套組進行基因之表現............71 六、SDS-PAGE 製備.................. 72 七、蛋白質產物活性分析..............72 八、蛋白質產物活性分析...... .......... 73 第三節 結果 ................... 73 一、澱粉酵素平板分析...............73 二、自分離株中選殖 α-glucosidase 基因和其表現. 73 三、自菌體中粗純化 α-glucosidase........ 74 四、蛋白質產物活性分析 ................. 74 第五章 討論....................... 90 第一節 以16S rRNA和螢光原位雜交探討陽明山國家公園溫泉區之古生菌族群之多樣性 .................. 90 第二節 太魯閣國家公園石灰華區微生物多樣性之調查...91 第三節 陽明山國家公園溫泉區之微生物族群生物資源之開發利用.... 93 第六章 總結....................... 95 第七章 參考文獻..................... 96 第八章 附錄 .......................109 | |
dc.language.iso | zh-TW | |
dc.title | 台灣溫泉區和石灰華環境微生物生態之調查和其生物資源利用之研究 | zh_TW |
dc.title | Studies on microbial community and bio-resource of hot spring and tufa in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 熊光濱(Kuang-Pin Hsiung),何國傑(Kuo-Chieh Ho),陳昭瑩(Chao-Ying Chen),許 輔(Fuu Sheu) | |
dc.subject.keyword | 古細菌,石灰華,微生物多樣性, | zh_TW |
dc.subject.keyword | archaea,tufa,microbial diversity, | en |
dc.relation.page | 127 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 4.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。