Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorKuan-Yu Chenen
dc.contributor.author陳冠宇zh_TW
dc.date.accessioned2021-06-13T08:04:19Z-
dc.date.available2011-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-20
dc.identifier.citation1.1 G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003).
1.2 U. Yuji and T. Tsunemasa, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 44, 124003 (2005).
1.3 F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L.Wei, “Energy band bowing parameter in AlxGa1–xN alloys,” J. Appl. Phys. 92, 4837 (2002).
1.4 J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411 (2003).
1.5 I. Ho, and G. B. Stringfellow. “ Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701 (1996).
1.6 K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi. M. Terazima, and T. Mukai, “Confocal microphotoluminescence of InGaN-based light-emitting diodes,” J. Appl. Phys. 98, 064503 (2005), and references therein.
1.7 C. Wetzel,T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85, 866 (2004).
1.8 K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
1.9 M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160 (2007).
1.10 Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura,”Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70, 981 (1997).
1.11 K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 74, 383 (1999).
1.12 M. D. McCluskey, L. T. Romano, B. S. Krusor, D. P. Bour, N. M. Johnson, and S. Brennan, “Phase separation in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72, 1730 (1999).
1.13 I. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, Robert F. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, MRS Internet J. Nitride Semicond. Res. 2, 6 (1997).
1.14 N. Grandjean, J. Massies, S. Dalmasso, P. Vennegues, L. Siozade, and L. Hirsch, “GaInN/GaN multiple-quantum-well light-emitting diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 74, 3616 (1999).
1.15 Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70, 981 (1997).
1.16 T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76, 3421 (2000).
1.17 S. Nakamura and G. Fasol, The Blue Laser Diodes (Springer, Berlin, (1997).
1.18 Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra and S. P. DenBarrs, “’S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370 (1998).
1.19 R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers” Appl. Phys. Lett. 74, 263 (1999).
1.20 R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers” Appl. Phys. Lett. 74, 263 (1999).
1.21 Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “'S-shaped' temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370 (1998)
1.22 Y. Sun, Y. H. Cho, E. K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, “Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer,” Appl. Phys. Lett. 84, 49 (2004)
1.23 Y. C. Cheng, C. H. Tseng, C. Hsu, K. J. Ma, S. W. Feng, E. C. Lin, C. C. Yang, and J. I. Chyi, “Quantum dot formation with silicon doping in InGaN/GaN quantum well structures and its implications in radiative mechanisms,” Proc. SPIE Int. Soc. Opt. Eng. 4999, 518 (2003)
1.24 S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodoluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71, 2346 (1997)
1.25 Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chuo, C. M. Lee, and J. I. Chyi, Appl. Phys. Lett. 77, 2988 (2000).
1.26 S. W. Feng, E. C. Lin, T. Y. Tang, Y. C. Cheng, H. C. Wang, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 83, 3906 (2003).
1.27 I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y. S. Kim, Appl. Phys. Lett. 91, 133105 (2007).
1.28 Y. H. Cho, Y. P. Sun, H. M. Kim, T. W. Kang, E.-K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, Appl. Phys. Lett. 90, 011912 (2007).
1.29 Y. S. Lin, K. J. Ma, C. C. Yang, and T. E. Weirich, J. Crystal Growth 242, 35 (2002).
1.30 J. B. Limb, W. Lee, J. H. Ryou, D. Yoo, and R. D. Dupuis, J. Electron. Mater. 36, 426 (2007).
1.31 J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, Appl. Phys. Lett. 92, 101113 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36529-
dc.description.abstract在本研究中,首先我們以氮化銦鎵半導體雷射 (406nm) 量測隨溫度變化的螢光頻譜、用 Ti:Sapphire 雷射之二倍頻 (波長391nm) 進行時域解析螢光頻譜、隨波長變化的時域解析螢光頻譜量測,以及量測電致發光頻譜和使用掃描式電子顯微鏡做陰極射線發光頻譜的量測,觀察不同樣品之量子井的特性並比較。透過優化高溫成長的p型氮化鎵厚度,我們最大化內部量子效率,並且在製作成氮化銦鎵/氮化鎵量子井發光二極體後減少它的電阻值.在成長p型氮化鎵鋁的電子阻隔層和p型氮化鎵層的過程中,量子井會因為高溫熱退火而使它重整銦聚集結構並達到加強載子局部化效果.除此之外,較弱的載子局部化會造成樣品有較低的內部量子效率.
  在具有不同厚度的p型氮化鎵層的發光二極體樣品中,擁有最高的內部量子效率的樣品,同時也有最低的電阻值.具有較薄的p型氮化鎵層的發光二極體,它們的電阻值會容易受到量子井的品質影響.
zh_TW
dc.description.abstractIn this study, we demonstrate the results of temperature-dependent photoluminescence, time-resolved photoluminescence, and wavelength-dependent TRPL, electroluminescence, and cathodoluminescence measurement results of the quantum wells of different samples. The optimization of the thickness of the high-temperature grown p-GaN layer for maximizing the QW internal quantum efficiency (IQE) and minimizing the device resistance in an InGaN/GaN QW light-emitting diode (LED) is demonstrated. During the growth of the p-AlGaN electron-blocking layer and p-GaN layer, the QWs are thermally annealed to first enhance carrier localization by reshaping the structures of indium-rich clusters before the optimized p-GaN thickness is reached. Beyond this point, the carrier localization effect becomes weakened, leading to lower IQE. Among the LED samples of different p-GaN thicknesses, the one with the highest IQE has the lowest device resistance. With a thicker p-GaN layer, the LED device resistance can be strongly affected by the QW crystal quality.en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:04:19Z (GMT). No. of bitstreams: 1
ntu-100-R98941075-1.pdf: 5170716 bytes, checksum: 2e23095cd3e6dabb0d82c31d1eace9b5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Application of Nitride-based Devices 1
1.2 Characteristics of an InGaN/GaN Quantum Well 2
1.3 Indium Aggregation and Quantum-dot like Structures 3
1.4 Carrier Localization in InGaN/GaN Quantum Wells 5
1.5 Research Motivations 6
References .. 8
Chapter 2 Optical Measurements with InGaN-based Laser Diode 20
2.1 Sample Descriptions 20
2.2 Photoluminescence (PL) Setup 21
2.3 Photoluminescence (PL) Results 22
2.4 Arrhenius Plot in Temperature-dependent PL 23
References . 26
Chapter 3 Time-resolved Photoluminescence 39
3.1 Time-resolved Photoluminescence (TRPL) Setup 39
3.2 Time-resolved Photoluminescence (TRPL) Results 41
3.3 Wavelength-dependent TRPL 42
References . 44
Chapter 4 Cathodoluminescence and Electroluminescence 55
4.1 Cathodoluminescence (CL) Mapping 55
4.2 Electroluminescence (EL) Result 56
Chapter 5 Conclusions 64
dc.language.isoen
dc.subject量子井zh_TW
dc.subject光學分析zh_TW
dc.subject發光二極體zh_TW
dc.subjectp-型氮化鎵zh_TW
dc.subject氮化銦鎵zh_TW
dc.subject氮化鎵zh_TW
dc.subjectOptical Analysesen
dc.subjectLight-emitting Diodesen
dc.subjectp-GaNen
dc.subjectQuantum Wellsen
dc.subjectGaNen
dc.subjectInGaNen
dc.title以光學方法分析發光二極體內不同厚度p-型氮化鎵層對底下氮化銦鎵/氮化鎵量子井發光效率的影響zh_TW
dc.titleOptical Analyses of the Emission Efficiencies of the InGaN/GaN Quantum Wells under the Conditions of Different p-GaN Thicknesses in Light-emitting Diodesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),吳育任(Yuh-Renn Wu)
dc.subject.keyword光學分析,發光二極體,p-型氮化鎵,氮化銦鎵,氮化鎵,量子井,zh_TW
dc.subject.keywordOptical Analyses,InGaN,GaN,Quantum Wells,p-GaN,Light-emitting Diodes,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2011-07-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved