Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯逢春
dc.contributor.authorShin-Tang Suen
dc.contributor.author蘇新棠zh_TW
dc.date.accessioned2021-06-13T08:03:41Z-
dc.date.available2007-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-21
dc.identifier.citationReference
Balaban, R. S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495.
Ben-Porath, I., and Weinberg, R. A. (2004). When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113, 8-13.
Berger, S. L. (2002). Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12, 142-148.
Bernardi, R., Scaglioni, P. P., Bergmann, S., Horn, H. F., Vousden, K. H., and Pandolfi, P. P. (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6, 665-672.
Bode, A. M., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793-805.
Bode, A. M., and Dong, Z. (2005). Inducible covalent posttranslational modification of histone H3. Sci STKE 2005, re4.
Briggs, S. D., Xiao, T., Sun, Z. W., Caldwell, J. A., Shabanowitz, J., Hunt, D. F., Allis, C. D., and Strahl, B. D. (2002). Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498.
Bringold, F., and Serrano, M. (2000). Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35, 317-329.
Brown, D. R., Thomas, C. A., and Deb, S. P. (1998). The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. Embo J 17, 2513-2525.
Cam, H., and Dynlacht, B. D. (2003). Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3, 311-316.
Campisi, J. (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11, S27-31.
Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522.
Chen, J. H., Stoeber, K., Kingsbury, S., Ozanne, S. E., Williams, G. H., and Hales, C. N. (2004). Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem 279, 49439-49446.
Chen, Q., Fischer, A., Reagan, J. D., Yan, L. J., and Ames, B. N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92, 4337-4341.
Chen, Q. M., Liu, J., and Merrett, J. B. (2000). Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 347, 543-551.
Cho, S. H., Lee, C. H., Ahn, Y., Kim, H., Kim, H., Ahn, C. Y., Yang, K. S., and Lee, S. R. (2004). Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett 560, 7-13.
d'Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P., and Jackson, S. P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198.
d'Adda di Fagagna, F., Teo, S. H., and Jackson, S. P. (2004). Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18, 1781-1799.
Dai, C. Y., and Enders, G. H. (2000). p16 INK4a can initiate an autonomous senescence program. Oncogene 19, 1613-1622.
Dang, J., Kuo, M. L., Eischen, C. M., Stepanova, L., Sherr, C. J., and Roussel, M. F. (2002). The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62, 1222-1230.
de Napoles, M., Mermoud, J. E., Wakao, R., Tang, Y. A., Endoh, M., Appanah, R., Nesterova, T. B., Silva, J., Otte, A. P., Vidal, M., et al. (2004). Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7, 663-676.
Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., and et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367.
Finkel, T., and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.
Garcia-Cao, M., O'Sullivan, R., Peters, A. H., Jenuwein, T., and Blasco, M. A. (2004). Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36, 94-99.
Gonzalo, S., Garcia-Cao, M., Fraga, M. F., Schotta, G., Peters, A. H., Cotter, S. E., Eguia, R., Dean, D. C., Esteller, M., Jenuwein, T., and Blasco, M. A. (2005). Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7, 420-428.
Green, D. R., and Evan, G. I. (2002). A matter of life and death. Cancer Cell 1, 19-30.
Grewal, S. I., and Rice, J. C. (2004). Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol 16, 230-238.
Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97, 503-514.
Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Harley, C. B., Futcher, A. B., and Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460.
Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621.
Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J., and Sedivy, J. M. (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14, 501-513.
Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. J. (1997). Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275, 1649-1652.
Itahana, K., Dimri, G., and Campisi, J. (2001). Regulation of cellular senescence by p53. Eur J Biochem 268, 2784-2791.
Juven-Gershon, T., and Oren, M. (1999). Mdm2: the ups and downs. Mol Med 5, 71-83.
Karlseder, J., Smogorzewska, A., and de Lange, T. (2002). Senescence induced by altered telomere state, not telomere loss. Science 295, 2446-2449.
Kinzler, K. W., and Vogelstein, B. (1997). Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761, 763.
Kurki, S., Peltonen, K., and Laiho, M. (2004). Nucleophosmin, HDM2 and p53: players in UV damage incited nucleolar stress response. Cell Cycle 3, 976-979.
Kurki, S., Peltonen, K., Latonen, L., Kiviharju, T. M., Ojala, P. M., Meek, D., and Laiho, M. (2004). Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5, 465-475.
Lachner, M., O'Sullivan, R. J., and Jenuwein, T. (2003). An epigenetic road map for histone lysine methylation. J Cell Sci 116, 2117-2124.
Latonen, L., Kurki, S., Pitkanen, K., and Laiho, M. (2003). p53 and MDM2 are regulated by PI-3-kinases on multiple levels under stress induced by UV radiation and proteasome dysfunction. Cell Signal 15, 95-102.
Lee, A. C., Fenster, B. E., Ito, H., Takeda, K., Bae, N. S., Hirai, T., Yu, Z. X., Ferrans, V. J., Howard, B. H., and Finkel, T. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274, 7936-7940.
Levitt, N. C., and Hickson, I. D. (2002). Caretaker tumour suppressor genes that defend genome integrity. Trends Mol Med 8, 179-186.
Li, M., Brooks, C. L., Wu-Baer, F., Chen, D., Baer, R., and Gu, W. (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972-1975.
Liu, H., Dibling, B., Spike, B., Dirlam, A., and Macleod, K. (2004). New roles for the RB tumor suppressor protein. Curr Opin Genet Dev 14, 55-64.
Lundberg, A. S., Hahn, W. C., Gupta, P., and Weinberg, R. A. (2000). Genes involved in senescence and immortalization. Curr Opin Cell Biol 12, 705-709.
Michael, D., and Oren, M. (2003). The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13, 49-58.
Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L., and Pelicci, P. G. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309-313.
Minsky, N., and Oren, M. (2004). The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 16, 631-639.
Narita, M., and Lowe, S. W. (2004). Executing cell senescence. Cell Cycle 3, 244-246.
Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J., and Lowe, S. W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716.
Nemoto, S., and Finkel, T. (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450-2452.
Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R. E., and Kouzarides, T. (2001). Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561-565.
Packer, L., and Fuehr, K. (1977). Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423-425.
Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., and Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5, 741-747.
Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., McMahon, M., Oren, M., and McCormick, F. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321-330.
Rubbi, C. P., and Milner, J. (2003). Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. Embo J 22, 6068-6077.
Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18, 1251-1262.
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.
Shay, J. W., and Roninson, I. B. (2004). Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23, 2919-2933.
Shay, J. W., and Wright, W. E. (2001). Aging. When do telomeres matter? Science 291, 839-840.
Shelton, D. N., Chang, E., Whittier, P. S., Choi, D., and Funk, W. D. (1999). Microarray analysis of replicative senescence. Curr Biol 9, 939-945.
Smogorzewska, A., and de Lange, T. (2002). Different telomere damage signaling pathways in human and mouse cells. Embo J 21, 4338-4348.
Stansel, R. M., de Lange, T., and Griffith, J. D. (2001). T-loop assembly in vitro involves binding of TRF2 near the 3' telomeric overhang. Embo J 20, 5532-5540.
Strahl, B. D., and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41-45.
Takahashi, Y., Rayman, J. B., and Dynlacht, B. D. (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14, 804-816.
Takai, H., Smogorzewska, A., and de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Curr Biol 13, 1549-1556.
Tamura, S., Hanada, M., Ohnishi, M., Katsura, K., Sasaki, M., and Kobayashi, T. (2002). Regulation of stress-activated protein kinase signaling pathways by protein phosphatases. Eur J Biochem 269, 1060-1066.
Temple, M. D., Perrone, G. G., and Dawes, I. W. (2005). Complex cellular responses to reactive oxygen species. Trends Cell Biol 15, 319-326.
Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., Milia, E., Padura, I. M., Raker, V. A., Maccarana, M., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21, 3872-3878.
Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S., and Trouche, D. (2001). Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21, 6484-6494.
Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R. S., and Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873-878.
Wu, C., Miloslavskaya, I., Demontis, S., Maestro, R., and Galaktionov, K. (2004). Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 432, 640-645.
Xiao, Z. X., Chen, J., Levine, A. J., Modjtahedi, N., Xing, J., Sellers, W. R., and Livingston, D. M. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375, 694-698.
Yang, Y., Ludwig, R. L., Jensen, J. P., Pierre, S. A., Medaglia, M. V., Davydov, I. V., Safiran, Y. J., Oberoi, P., Kenten, J. H., Phillips, A. C., et al. (2005). Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7, 547-559.
Yap, D. B., Hsieh, J. K., Chan, F. S., and Lu, X. (1999). mdm2: a bridge over the two tumour suppressors, p53 and Rb. Oncogene 18, 7681-7689.
Zhang, H. S., and Dean, D. C. (2001). Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene 20, 3134-3138.
Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W., and Dean, D. C. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79-89.
Zhang, R., Poustovoitov, M. V., Ye, X., Santos, H. A., Chen, W., Daganzo, S. M., Erzberger, J. P., Serebriiskii, I. G., Canutescu, A. A., Dunbrack, R. L., et al. (2005). Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8, 19-30.
Zhang, Y., Wolf, G. W., Bhat, K., Jin, A., Allio, T., Burkhart, W. A., and Xiong, Y. (2003). Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23, 8902-8912.
Zhou, R., Frum, R., Deb, S., and Deb, S. P. (2005). The growth arrest function of the human oncoprotein mouse double minute-2 is disabled by downstream mutation in cancer cells. Cancer Res 65, 1839-1848.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36513-
dc.description.abstract細胞老化屬於一種極度穩定的細胞週期停止運轉狀態,並且作為細胞遭遇壓力時的一套反應機制。目前已知有許多種壓力皆可以引發細胞老化,反應不同壓力的細胞老化機制是由兩個抑癌因子所控制: p53 和 Rb。在老化細胞中,Rb分子會促進形成一種特殊的異染色體結構稱為senescence associated heterochromatin foci (SAHF)。許多E2F所調控的與促進細胞增生相關的基因會被包裹進此特殊異染色體內而抑制其基因表現。人類致癌因子:Hdm2 是ㄧ個含有RING domain的 E3 ubiquitin ligase,已知其是p53的主要負調節因子並且也有能力與Rb做結合,因此Hdm2可能扮演細胞老化中p53 和 Rb兩個重要角色間的橋樑。
在此研究中,我們利用H2O2建立一個有效誘發細胞老化的方法並且藉此研究Hdm2在細胞老化中所扮演的角色。細胞經H2O2處裡過後,p53 pathway被活化,p53進ㄧ步去活化Hdm2的產生。Hdm2和p53兩個分子在細胞老化形成過程中都保持在啟動狀態。Upregulated Hdm2形成一個特殊的foci在細胞核內,並且在不同次的H2O2處理下當老化的細胞比例越高,形成Hdm2 foci的細胞所與之比例也越高。在H2O2處理下,Hdm2 和 Rb彼此間的結合也增加。我們也在2次處理H2O2後2天發現mono-ubiquitylation of histone H4明顯增加。在H2O2引發的細胞老化過程裡Hdm2 foci的形成可能屬於一套機制,此機制可能負責p53活性的維持並且與Rb-dependent SAHF相關。
zh_TW
dc.description.abstractCellular senescence, an extremely stable form of cell cycle arrest that serve as a general cellular stress response program. Although diverse stress can induce a senescence response, they appear to be governed by the two tumor suppressor proteins, p53 and pRB. In senescent cell, Rb promotes a distinct heterochromatic structure formation, called senescence associated heterochromatin foci (SAHF). Several E2F target genes that promote cellular proliferation were repressed by packaging into SAHF in senescent cells. The human oncoprotein Mdm2 (Hdm2), a RING domain E3 ubiquitin ligase known as the major negative regulator of p53, also interact with pRB physically. Hdm2 may serve as a mediator between p53 and pRB in senescence response.
In this study, we optimize an effective H2O2-induced senescence protocol and study the role of Hdm2 in H2O2-induced senescence. After treated cell with H2O2, p53 pathways were activated with upregulate Hdm2 protein. Both p53 and Hdm2 are upregulated and sustained during the course of H2O2-induced senescence. The upregulated Hdm2 form the distinct nuclear foci and the ratio of Hdm2 foci is correlated to the ratio of SA-β-gal positive cells in different treatment protocols. Furthermore, H2O2 treatment promotes physical interaction between Hdm2 and Rb. We also find mono-ubiquitylation of histone H4 at second day under 2 × H2O2 treatment. Hdm2 foci formation may be a novel mechanism for p53 sustained activity during H2O2-induced senescence and a possible connection to Rb-dependent SAHF formation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:03:41Z (GMT). No. of bitstreams: 1
ntu-94-R92b43003-1.pdf: 2376104 bytes, checksum: 89fb72f18efd2f67572a9bbc69399487 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
Contents I
Figures III
Abbreviation IV
Abstract V
中文摘要 VI
Introduction 1
ROS 2
P53 2
Rb 4
Hdm2 5
Histone codes 6

Material and methods 9
Cell culture 9
H2O2 treatment 9
Protein extraction and quantification 9
Western-blot 10
Immuoprecipitaion 10
Immunofluorescence 10
SA-β-gal stain 11
Acid extraction 11
Result 13
Induction of stress-induced senescence and Senescence Associated Heterochromatin Foci (SAHF) formation in H2O2-treated cells. 13
Induction of cell cycle checkpoint proteins and an oncoprotein, Hdm2, in the H2O2-induced senescent cells. 13
H2O2-induced Hdm2 up-regulation is p53-dependent 14
The sustained upregulation of Hdm2 both in NP-40 soluble and
insoluble fraction during the senescence response 14

Hdm2 form the nuclear foci in the H2O2-induced senescent cells 15
The H2O2 treatment promotes physical interaction between Hdm2 and Rb 15
The H2O2 treatment promotes histone H4 mono-ubiquitylation 16
Discussion 17
Reference 30
dc.language.isoen
dc.subject細胞老化zh_TW
dc.subjectHdm2en
dc.subjectsenescenceen
dc.titleHdm2在過氧化氫所誘發的細胞老化中之角色探討zh_TW
dc.titleThe role of Hdm2 in H2O2-induced senescence in WI38 human diploid fibroblasten
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃火鍊,黃娟娟,李明亭,蕭培文
dc.subject.keyword細胞老化,zh_TW
dc.subject.keywordHdm2,senescence,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2005-07-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved