請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36473
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡偉博(Wei-bor Tasi) | |
dc.contributor.author | Po-Ying Chu | en |
dc.contributor.author | 朱柏穎 | zh_TW |
dc.date.accessioned | 2021-06-13T08:02:09Z | - |
dc.date.available | 2016-07-27 | |
dc.date.copyright | 2011-07-27 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-20 | |
dc.identifier.citation | 1. Chong, E.J., et al., Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, 2007. 3(3): p. 321-330.
2. Tsuruta, D., et al., The barrier function of skin: how to keep a tight lid on water loss. Trends in Cell Biology, 2002. 12(8): p. 355-357. 3. MacNeil, S., Progress and opportunities for tissue-engineered skin. Nature, 2007. 445(7130): p. 874-880. 4. Seal, B.L., T.C. Otero, and A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports, 2001. 34(4-5): p. 147-230. 5. Muzzarelli, R.A.A., Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 2009. 76(2): p. 167-182. 6. Fonder, M.A., et al., Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. Journal of the American Academy of Dermatology, 2008. 58(2): p. 185-206. 7. Wild, T., et al., Basics in nutrition and wound healing. Nutrition, 2010. 26(9): p. 862-866. 8. Lionelli, G.T. and W.T. Lawrence, Wound dressings. Surgical Clinics of North America, 2003. 83(3): p. 617-638. 9. Jayakumar, R., et al., Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances. 29(3): p. 322-337. 10. Mertz, P.M., D.A. Marshall, and W.H. Eaglstein, Occlusive wound dressings to prevent bacterial invasion and wound infection. Journal of the American Academy of Dermatology, 1985. 12(4): p. 662-668. 11. Rovee, D.T., Evolution of wound dressings and their effects on the healing process. Clinical Materials, 1991. 8(3-4): p. 183-188. 12. Gu, S.-Y., et al., Electrospinning of gelatin and gelatin/poly(l-lactide) blend and its characteristics for wound dressing. Materials Science and Engineering: C, 2009. 29(6): p. 1822-1828. 13. Liu, X., et al., In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. Journal of Biomedical Materials Research Part A, 2010. 94A(2): p. 499–508. 14. Kenawy, E.-R., et al., Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials, 2003. 24(6): p. 907-913. 15. Verreck, G., et al., Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. Journal of Controlled Release, 2003. 92(3): p. 349-360. 16. Yoshimoto, H., et al., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003. 24(12): p. 2077-2082. 17. Formhals A, i., Process and apparatus for preparing artificial threads. US Patent No. 1,975,504, 1934. 18. Taylor, G., Electrically Driven Jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969. 313(1515): p. 453-475. 19. Sill, T.J. and H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006. 20. Yarin, A.L., S. Koombhongse, and D.H. Reneker, Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 2001. 89(5): p. 3018-3026. 21. Ziabari, M., V. Mottaghitalab, and A.K. Haghi, Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering, 2009. 26: p. 53-62. 22. Deitzel, J.M., et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42(1): p. 261-272. 23. Megelski, S., et al., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 2002. 35(22): p. 8456-8466. 24. Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995. 35(2-3): p. 151-160. 25. Zhang, C., et al., Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 2005. 41(3): p. 423-432. 26. Lu, P. and B. Ding, Applications of Electrospun Fibers. Recent Patents on Nanotechnology, 2008. 2: p. 169-182 27. Liu, S.-J., et al., Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. Journal of Membrane Science, 2010. 355(1-2): p. 53-59. 28. Qiu, L. and Y. Bae, Polymer Architecture and Drug Delivery. Pharmaceutical Research, 2006. 23(1): p. 1-30. 29. Luong-Van, E., et al., Controlled release of heparin from poly([epsilon]-caprolactone) electrospun fibers. Biomaterials, 2006. 27(9): p. 2042-2050. 30. Luu, Y.K., et al., Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. Journal of Controlled Release, 2003. 89(2): p. 341-353. 31. Martins, A., et al., Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials, 2010. 31(22): p. 5875-5885. 32. Szentivanyi, A., et al., Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. Advanced Drug Delivery Reviews, 2011. 63(4-5): p. 209-220. 33. Huang, Z.-M., et al., Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. Journal of Biomedical Materials Research Part A, 2006. 77A(1): p. 169-179. 34. Belenkaya, B.G.S.J., CA, US), Sakharova, Valentina I. (Moscow, RU), Polevov, Vyacheslav N. (Moscow, RU), Biodegradable absorbents and methods of preparation. 2003: United States. 35. Ignatious, F.K.o.P., PA, US), Sun, Linghong (Collegeville, PA, US), Craig, Andrew (Tonbridge, GB), Crowe, David (Tonbridge, GB), Ho, Tim (Tonbridge, GB), Millan, Michael (Tonbridge, GB), Amorphous pharmaceutical compositions. 2006, SmithKline Beecham Corporation: United States. 36. Buschle-Diller, G., et al., Release of antibiotics from electrospun bicomponent fibers. Cellulose, 2007. 14(6): p. 553-562. 37. Chew, S.Y., et al., Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules, 2005. 6(4): p. 2017-2024. 38. Tiwari, S.K., et al., Optimizing partition-controlled drug release from electrospun core-shell fibers. International Journal of Pharmaceutics, 2010. 392(1-2): p. 209-217. 39. Sun, Z., et al., Compound Core–Shell Polymer Nanofibers by Co-Electrospinning. Advanced Materials, 2003. 15(22): p. 1929-1932. 40. Yu, J.H., S.V. Fridrikh, and G.C. Rutledge, Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning. Advanced Materials, 2004. 16(17): p. 1562-1566. 41. Chakraborty, S., et al., Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews, 2009. 61(12): p. 1043-1054. 42. Ji, W., et al., Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomaterialia, 2010. 6(11): p. 4199-4207. 43. Lu, Y., et al., Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning. Acta Biomaterialia, 2009. 5(5): p. 1562-1574. 44. He, C.-L., et al., Coaxial Electrospun Poly(L-Lactic Acid) Ultrafine Fibers for Sustained Drug Delivery. Journal of Macromolecular Science, Part B: Physics, 2006. 45(4): p. 515 - 524. 45. Kobayashi, H., K. Shiraki, and Y. Ikada, Toxicity test of biodegradable polymers by implantation in rabbit cornea. Journal of Biomedical Materials Research, 1992. 26(11): p. 1463-1476. 46. Vance, R.J., et al., Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials, 2004. 25(11): p. 2095-2103. 47. Kumbar, S.G., et al., Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials, 2008. 29(30): p. 4100-4107. 48. Williams, D.F., Biodegradation of surgical polymers. Journal of Materials Science, 1982. 17(5): p. 1233-1246. 49. Li, M., et al., Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 2006. 27(13): p. 2705-2715. 50. Tanaka, A., T. Nagate, and H. Matsuda, Acceleration of Wound Healing by Gelatin Film Dressings with Epidermal Growth Factor. The Journal of Veterinary Medical Science, 2005. 67(9): p. 909-913. 51. Huang, Z.-M., et al., Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 2004. 45(15): p. 5361-5368. 52. Ki, C.S., et al., Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 2005. 46(14): p. 5094-5102. 53. Songchotikunpan, P., J. Tattiyakul, and P. Supaphol, Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 2008. 42(3): p. 247-255. 54. Ulubayram, K., et al., EGF containing gelatin-based wound dressings. Biomaterials, 2001. 22(11): p. 1345-1356. 55. Deng, C.-M., et al., Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydrate Polymers, 2007. 69(3): p. 583-589. 56. Lee, S.B., et al., Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials, 2005. 26(14): p. 1961-1968. 57. Wang, T.-W., et al., The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials, 2006. 27(33): p. 5689-5697. 58. Tabata, Y., S. Hijikata, and Y. Ikada, Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. Journal of Controlled Release, 1994. 31(2): p. 189-199. 59. Mandal, B.B., J.K. Mann, and S.C. Kundu, Silk fibroin/gelatin multilayered films as a model system for controlled drug release. European Journal of Pharmaceutical Sciences, 2009. 37(2): p. 160-171. 60. Naidu, B.V.K. and A.T. Paulson, A new method for the preparation of gelatin nanoparticles: Encapsulation and drug release characteristics. Journal of Applied Polymer Science, 2011. 121(6): p. 3495-3500. 61. Meng, Z.X., et al., Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011. 84(1): p. 97-102. 62. http://www.btinternet.com/~martin.chaplin/hygel.html. 63. Jamali, F. and D.R. Brocks, Clinical Pharmacokinetics of Ketoprofen and Its Enantiomers. Clinical Pharmacokinetics, 1990. 19(3): p. 197-217. 64. Matsuda, S., et al., Bioadhesion of gelatin films crosslinked with glutaraldehyde. Journal of Biomedical Materials Research, 1999. 45(1): p. 20-27. 65. Ofner, I.I.I.C.M. and W.A. Bubnis, Chemical and Swelling Evaluations of Amino Group Crosslinking in Gelatin and Modified Gelatin Matrices. Pharmaceutical Research, 1996. 13(12): p. 1821-1827. 66. Zhang, Y.Z., et al., Crosslinking of the electrospun gelatin nanofibers. Polymer, 2006. 47(8): p. 2911-2917. 67. Zhang, Y., et al., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005. 72B(1): p. 156-165. 68. Meng, Z.X., et al., Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Materials Science and Engineering: C, 2010. 30(8): p. 1204-1210. 69. Zhang, S., et al., Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A, 2009. 90A(3): p. 671-679. 70. Li, X.-k., et al., Characteristics of PLGA-gelatin complex as potential artificial nerve scaffold. Colloids and Surfaces B: Biointerfaces, 2007. 57(2): p. 198-203. 71. Tan, H., et al., RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 91B(1): p. 228-238. 72. Kim, C.H., et al., An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006. 78B(2): p. 283-290. 73. Li, Q., et al., Structural characterization and dynamic water adsorption of electrospun polyamide6/montmorillonite nanofibers. Journal of Applied Polymer Science, 2008. 107(6): p. 3535-3540. 74. Jiang, H., et al., Modulation of protein release from biodegradable core–shell structured fibers prepared by coaxial electrospinning. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006. 79B(1): p. 50-57. 75. Wang, Z., et al., Sustained release of ketoprofen from fibrous chitosan-poly([var epsilon]-caprolactone) membranes. Carbohydrate Polymers, 2011. 84(1): p. 624-630. 76. Park, J.-Y. and I.-H. Lee, Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. Journal of Polymer Research, 2010: p. 1-5. 77. Lee, K.W.Y., et al., Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. International Journal of Pharmaceutics, 2009. 365(1-2): p. 190-199. 78. Jiang, H., et al., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. Journal of Controlled Release, 2005. 108(2-3): p. 237-243. 79. Vargas, E.A.T., et al., Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomaterialia, 2010. 6(3): p. 1069-1078. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36473 | - |
dc.description.abstract | 現今傷口敷藥有許多形式,電紡絲是其中的一種。電紡絲擁有高孔隙度、高比表面積、孔洞小等優點,另外還可以模仿細胞外間質的構造,所以電紡絲是傷口敷藥的良好選擇之一。本實驗利用同軸電紡絲的技術來製造軸心為聚(乳酸-甘醇酸)而殼層為明膠之電紡絲或者是軸心和殼層都是明膠的電紡絲,其所形成的電紡絲薄膜當作傷口敷藥的生醫材料。
由於明膠對水的溶解度相當高,所以交聯是必須要的。經過交聯過後的電紡絲比沒交連過的電紡絲泡水後重量損失較少。且良好的傷口敷藥必須有較佳的吸水性,所以在本研究中也測試了吸水性,沒有交聯過的聚(乳酸-甘醇酸)-明膠同軸電紡絲有較佳的吸水性,然而用EDC/NHS交聯的吸水性較差;而明膠電紡絲用EDC/NHS有較佳的吸水性。最後,包埋藥物做藥物釋放,沒有經過交聯的聚(乳酸-甘醇酸)-明膠同軸電紡絲在兩個小時內就釋放了將近80%,而經過戊二醛蒸氣交聯的聚(乳酸-甘醇酸)-明膠同軸電紡絲其釋放量大概只有一半左右:而在明膠-明膠同軸電紡絲經過戊二醛蒸氣交聯後,起初其同軸電紡絲釋放量較單軸電紡絲為慢。 本研究成功證實以同軸電紡絲交過戊二醛蒸氣交聯後可有效減少明膠易溶於水的情況,並且可以達到良好的吸水性和控制藥物釋放的結果。 | zh_TW |
dc.description.abstract | Due to the advance in biomaterial, wound dressing has been fabricated in many forms in recent days, where electrospinning-based material has been known as one of the potential candidates. Since electrospinning consists of advantages due to its high porosity, high specific area, and small pore size, it can mimic the extracellular matrix (ECM) to apply in wound dressing. In this study, core-shell technique was used to fabricate core-shell PLGA-gelatin and gelatin-gelatin fiber meshes to serve as the biomaterial of wound dressing.
Since gelatin consists of high water-solubility, crosslinkage is applied on the fabricated fibers to examine its physical character. Generally, ideal wound dressing should possess great water adsorption; therefore the water capacity of the crosslinked and non-crosslinked fibers was studied. The weight of non-crosslinked fiber meshes were observed to be more than those of crosslinked fiber meshes. However, the water adsorption of non-crosslinked core-shell PLGA-gelatin fiber mesh is shown to be higher than the crosslinked fibers, with even higher degree of water adsorption for fibers that were crosslinked by EDC/NHS. When analyzing the release profile of the fibers, about 80% of the entrapped drugs were released from non-crosslinked core-shell PLGA-gelatin fibers which are twice more than the glutaraldehyde vapor-crosslinked fibers. However, the release from core-shell gelatin-gelatin fiber crosslinked by glutaraldehdye vapor is slower than those of monoaxial gelatin in initial period. In this study, core-shell electrospinning crosslinked by glutaraldehyde vapor was observed to effectively reduce the weight loss in water with great water adsorption to perform sustained release of drugs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:02:09Z (GMT). No. of bitstreams: 1 ntu-100-R98524086-1.pdf: 4747480 bytes, checksum: 456b2a5ad8583ab72534a30571f375e2 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Content
Abstract III Figure VII Table X Chapter 1 1 1.1 Physiologic wound healing 1 1.2 Wound dressing 4 1.2.1 Background 4 1.2.2 Forms of wound dressing 6 1.2.3 Ideal wound dressing 7 1.3 Electrospinning 8 1.3.1 Background 8 1.3.2 Electrospinning process 9 1.3.3 The parameter of electrospinning 11 1.3.4 Electrospinning application on wound dressing 15 1.4 Drug release 16 1.4.1 Release kinetic of substances from electrospinning fibers 17 1.4.2 Application of electrospinning on drug release 19 1.5 Core-shell electrospinning 21 1.6 Materials that can be used as drug delivery system 23 1.6.1 Poly (L-lactide-co-glicolide), PLGA 25 1.6.2 Gelatin 26 1.6.3 Ketoprofen and allura red 28 1.7 Research motivation 29 1.8 Research objective 30 Chapter 2 31 2.1 Chemicals 31 2.1.1 Electrospinning of core-shell fiber meshes 31 2.1.2 Crosslinking of gelatin 31 2.1.3 Drug Release medium 32 2.1.4 Quantification of drug loading 32 2.2 Experimental instrument 32 2.3 Experimental materials 33 2.4 Solution formula 34 2.5 Methods 34 2.5.1 Fabrication of electrospinning fiber scaffold 34 2.5.1.1 Fabrication of electrospinning uni-axial fiber 34 2.5.1.2 Fabrication of core-shell electrospinning fiber scaffold 37 2.5.2 Crosslinking of gelatin in fibers of electrospining fiber mesh 40 2.5.3 Topography of electrospinning fibers 42 2.5.4 Weight variation of fiber meshes 42 2.5.5 Water uptake capacity of fiber meshes 43 2.5.6 Fabrication of electrospinning fiber scaffold containing drug 44 2.5.6.1 Fibers containing ketoprofen 44 2.5.6.2 Fibers containing allura red 44 2.5.7 Drug loading 47 2.5.8 Drug release 48 Chapter 3 50 3.1 Morphology of the electrospinning fibers 50 3.2 Weight variation of fiber mesh 52 3.3 Water uptake capacity of fiber mesh 53 3.4 Drug release 55 Chapter 4 81 Chapter 5 91 Chapter 6 92 Reference 93 Figure Figure 1- 1 The three phrases in normal wound healing process. (A) Inflammatory phase; (B) Proliferative phase; (C) Remodeling phase 3 Figure 1- 2 A typical apparatus of electrospinning system 11 Figure 1- 3 Effect of varying the applied voltage on the formation of the Taylor cone 14 Figure 1- 4 Appearance of would healings at 1, 2 and 3 weeks after grafting: (A) gauze group, (B) nanofibers group, and (C) commercial dressing group 16 Figure 1- 5 Comparison of a typical release profile due to diffusion and the deviation from it due to burst release 19 Figure 1- 6 Release profile of monoaxial and core–shell fibers 20 Figure 1- 7 Schematic diagram of core–shell electrospinning. 23 Figure 1- 8 TEM image of a core-shell fiber and SEM image of cross-section core-shell fibers 23 Figure 1- 9 The illustrative structure of PLGA. 26 Figure 1- 10 The repeat unit structure of gelatin. 28 Figure 1- 11 The illustrative structure of Ketoprofen 29 Figure 1- 12 The illustrative structure of allura red. 29 Figure 2- 1 The schematic diagram of monoaxial electrospinning system. 36 Figure 2- 2 The apparatus of monoaxial electrospinning system:(A) High voltage power supply;(B) syringe pump:(C) grounded collector. 37 Figure 2- 3 The schematic diagram of core-shell electrospinning system. 39 Figure 2- 4 The apparatus of core-shell electrospinning system. 39 Figure 2- 5 Chemical reactions between gelatin and glutaraldehyde 41 Figure 2- 6 EDC crosslinking in gelatin to form an amide bond between carboxylic acid and amino groups 42 Figure 2- 7 The appearance of PLGA-containingfiber mesh:(A) monoaxial PLGA;(B) monoaxial PLGA containing allura red;(C) core-shell PLGA-gelatin;(D) core-shell PLGA-gelatin containing allura red. 46 Figure 2- 8 The appearance of gelatin fiber mesh:(A) monoaxial gelatin;(B) monoaxial gelatin containing allura red;(C) core-shell gelatin-gelatin;(D) core-shell gelatin-gelatin containing allura red. 47 Figure 3- 1 SEM image of monoaxial PLGA fibers and core-shell PLGA-gelatin fibers:PLGA (A);non-crosslinked PLGA-gelatin (B);crosslinked by glutaraldehyde vapor for 10 hours (C) and19 hours (D), and by EDC/NHS for 24 hours (E) 59 Figure 3- 2 SEM image of monoaxial gelatin fibers: non-crosslinked (A);crosslinked by glutaraldehyde vapor for 10 hours (B) and19 hours (C), and by EDC/NHS for 24 hours (D). 60 Figure 3- 3 SEM image of core-shell gelatin-gelatin fibers:non-crosslinked (A);crosslinked by glutaraldehyde vapor for 10 hours (B) and19 hours (C), and by EDC/NHS for 24 hours (D) 61 Figure 3- 4 SEM image of monoaxial PLGA fibers and core-shell PLGA-gelatin fibers after soaking in deionized water:PLGA (A);non-crosslinked PLGA-gelatin (B);crosslinked by glutaraldehyde vapor for 10 hours (C) and19 hours (D), and by EDC/NHS for 24 hours (E). 62 Figure 3- 5 SEM image of monoaxial gelatin fibers (A,C,E) and core-shell gelatin-gelatin fibers (B,D,F) after soaking in water:crosslinked by glutaraldehyde vapor for 10 hours (A,B) and19 hours (C,D), and by EDC/NHS for 24 hours (E,F). 63 Figure 3- 6 SEM image of monoaxial PLGA fibers and core-shell PLGA-gelatin fibers containing allura red:PLGA (A);non-crosslinked PLGA-gelatin (B);crosslinked by glutaraldehyde vapor for 10 hours (C) and19 hours (D), and by EDC/NHS for 24 hours (E). 65 Figure 3- 7 SEM image of monoaxial gelatin fibers containing allura red:non-crosslinked (A);crosslinked by glutaraldehyde vapor for 10 hours (B) and19 hours (C), and by EDC/NHS for 24 hours (D) 66 Figure 3- 8 SEM image of core-shell gelatin-gelatin fibers containing allura red:(non-crosslinked (A);crosslinked by glutaraldehyde vapor for 10 hours (B) and19 hours (C), and by EDC/NHS for 24 hours (D) 67 Figure 3- 9 Weight variation of electrospinning fiber meshes of monoaxial PLGA fiber and core-shell PLGA-gelatin fiber after soaking in deionized water for 24 hours. 69 Figure 3- 10 Weight variation of electrospinning fiber meshes of monoaxial gelatin fiber and core-shell gelatin-gelatin fiber after soaking in deionized water for 24 hours. 70 Figure 3- 11 Water adsorption of monoaxial PLGA fiber mesh and core-shell PLGA-gelatin fiber meshes after soaking in deionized water for 24 hours. 71 Figure 3- 12 Water adsorption of monoaxial gelatin fiber meshes and core-shell gelatin-gelatin fiber meshes after soaking in deionized water for 24 hours. 72 Figure 3- 13 Release profiles of ketoprofen from the monoaxial fiber mesh of PLGA and core-shell fiber meshes of PLGA-gelatin in PBS. 73 Figure 3- 14 Release profile of ketoprofen from the monoaxial gelatin and core-shell fiber meshes of gelatin-gelatin in PBS. 74 Figure 3- 15 Accumulative release weight of allura red from the monoaxial PLGA and core-shell PLGA-gelatin fiber meshes in PBS:(A) long-period;(B) short-period. 76 Figure 3- 16 Accumulative release percentage of allura red from the monoaxial PLGA and core-shell PLGA-gelatin fiber meshes in PBS:(A) long-period;(B) short-period. 77 Figure 3- 17 Accumulative release weight of allura red from the monoaxial gelatin and core-shell gelatin-gelatin fiber meshes in PBS:(A) long-period;(B) short-period. 79 Figure 3- 18 Accumulative release percentage of allura red from the monoaxial gelatin and core-shell gelatin-gelatin fiber meshes in PBS:(A) long-period;(B) short-period. 80 Table Table 1- 1 Phases of wound healing 4 Table 1- 2 Summary of basic wound dressings 7 Table 1- 3 Effects of electrospinning parameters on fiber morphology 15 Table 3- 1 The diameter of crosslinked or non-crosslinked monoaxial PLGA fibers and core-shell PLGA-gelatin fibers. 64 Table 3- 2 The diameter of non-crosslinked monoaxial gelatin fibers and core-shell gelatin-gelatin fibers. 64 Table 3- 3 The diameter of crosslinked or non-crosslinked monoaxial PLGA fibers and core-shell PLGA-gelatin fibers after soaking in deionized and then lypholization. 64 Table 3- 4 The diameter of crosslinked or non-crosslinked monoaxial PLGA fibers and core-shell PLGA-gelatin fibers containing allura red. 68 Table 3- 5 The diameter of non-crosslinked monoaxial gelatin fibers and core-shell gelatin-gelatin fibers containing allura red. 68 Table 3- 6 Drug allura red loading of monoaxial PLGA fiber mesh and core-shell PLGA-gelatin fiber meshes 75 Table 3- 7 Drug allura red loading of monoaxial gelatin fiber meshes and core-shell gelatin-gelatin fiber meshes 78 | |
dc.language.iso | zh-TW | |
dc.title | 同軸電紡絲在傷口敷藥的應用 | zh_TW |
dc.title | Application of core-shell electrospinning on wound dressing | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王孟菊(Meng-Jiy Wang),游佳欣(Jiashing Yu) | |
dc.subject.keyword | 傷口敷藥,同軸電紡絲,聚乳酸-甘醇酸,明膠,藥物釋放, | zh_TW |
dc.subject.keyword | wound dressing,core-shell electrospinning,PLGA,gelatin,drug release, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 4.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。