Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳其誠
dc.contributor.authorChia-Liang Sunen
dc.contributor.author孫嘉梁zh_TW
dc.date.accessioned2021-06-13T08:01:31Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citation[1] Montserrai Alsina, Pikar Bayer: “Quaternion Orders, Quadratic Forms, and Shimura Curves.” CRM Monograph Series.
[2] I. Reiner: “Maximal Orders.” Oxford Science Publications. p.113, p.5
[3] M.F. Atiyah, I.G. Macdonald: “Introduction to Commutative Algebra.” Addison-Wesley Publishing Company. Proposition 2.4, Corollary 9.4
[4] Z.I. Borevich, I.R. Shafarevich: “Number Theory.” Pure and Applied Mathematics. p.259, p.217
[5] Jurgen Neukirch: “Algebraic Number Theory.” Translated from German by Norbert Schappacher. Springer. p.319
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36456-
dc.description.abstract這篇文章旨在介紹四元素代數裡的秩序。在第二節,我用非常初等的手法,推導出一些我們需要的四元素代數的基本性質;學過一年大學抽象代數並知道一點關於張量積的性質的人應該都能讀的懂。在第三節裡,我證明了秩序的一些性質並引出這篇文章的主角「艾克秩序」。第四節介紹佈於有理數上的秩序的特殊性質。第五節和第六節的目標在描述佈於代數數體上的艾克秩序。在第五節,佈於區域體上的艾克秩序被以清楚明白的式子寫出來。在第六節,我們收集區域的資訊用以瞭解全域體上的艾克秩序。最後,一些有理數上的艾克秩序被清楚地給出。zh_TW
dc.description.abstractThe goal of this paper is to introduce the quaternion orders. In Section
ef{basic}, I give a brief introduction to quaternion algebra. Definitions and basic results necessary for the remaining sections are established in a very elementary way. Anyone who has learned one-year undergraduate algebra and knows the definition of tensor product should be able to read it without difficulties. In Section
ef{general}, general properties about the quaternion orders are proven and the Eichler orders are introduced. In Section
ef{rational}, special properties of the quaternion orders over the field of rational numbers are given. Section
ef{local} and
ef{global} are aimed to describe all the Eichler orders over number fields. In Section
ef{local}, we give explicit formulations for the Eichler orders over the local field which is the completion of a number field with respect to one of its metric. In Section
ef{global}, information about the local Eichler orders are collected to get an understanding about the Eichler orders over global fields. Some Eichler orders over the field of rational numbers are given explicitly.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:01:31Z (GMT). No. of bitstreams: 1
ntu-94-R92221008-1.pdf: 470610 bytes, checksum: 3f8f6fad19b2696fd93bc98cc9292dec (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
Title i
Contents ii
Acknowledgements iii
Abstract in Chinese iv
Abstract v
1 Introduction 1
2 Definitions and Basic Results 2
3 Quaternion Orders 10
4 Special properties for Quaternion Orders over the rational integers 19
5 Local Eichler Orders 23
6 Global Eichler Orders 27
Bibliography 33
dc.language.isoen
dc.subject艾克秩序zh_TW
dc.subject秩序zh_TW
dc.subject四元素代數zh_TW
dc.subjectquaternion algebrasen
dc.subjectEichler ordersen
dc.subjectordersen
dc.title四元素代數裡的秩序zh_TW
dc.titleQuaternion Ordersen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱樺,陳榮凱,陳君明,林智仁
dc.subject.keyword四元素代數,秩序,艾克秩序,zh_TW
dc.subject.keywordquaternion algebras,orders,Eichler orders,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
459.58 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved