Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭隆瀚(Lung-Han Pong)
dc.contributor.authorYi-Bin Luen
dc.contributor.author盧一斌zh_TW
dc.date.accessioned2021-06-13T08:01:27Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citation[1] L. Esaki., and R. Tsu, IBM J. Res. Develop. 14, 61 (1969).
[2] L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[3] R. Dingle, Festkorperprobleme 15, 21 (1975).
[4] C. Weisbuch, Semiconductors and Semimetals, 24, Academic Press (1987).
[5] T. Ishibashi, S. Tarucha, and H. Okamoto, Proc. Int. Symp. GaAs and Related Compounds, Oslo (1981).
[6] D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, and W. T. Tsang, Phys. Rev. B. 28, 96 (1982).
[7] D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tang, Appl. Phys. Lett. 41, 679 (1982).
[8] D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 42,925 (1983).
[9] D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE-20,265 (1983).
[10] D. S. Chemla, T. C. Damen, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 42,864 (1983).
[11] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burus, Phys. Rev Lett. 53, 2173 (1984).
[12] D. A. B. Miller, C. A. Burus, Phys. Rev. B 32, 1043 (1985).
[13] W. T. Tsang, Appl. Phys. Lett. 39, 786 (1981).
[14] T. H. Wood, C. A. Burus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 44, 16 (1984).
[15] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burus, Phys. Rev Lett.45, 163 (1984).
[16] D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burus, T. H. Wood, C. A. Burus, Appl. Phys. Rev. B. 28, 96 (1982).
[17] Y.Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
[18] W. Grumdmann, N. N. Lendentsov, O. Steir, D. Bimberg, Appl. Phys. Lett. 68, 979 (1996).
[19] I. N. Stranski, and L. Krastanow, Akad. Wiss Wien Math.-Natur. IIb 146,797 (1937).
[20] W. J. Schaffer, M. D. Lind, S. P. Kowalczyk, and R. W. J. Grant, Vac. Sci. Technol. B1, 688 (1983).
[21] B. F. Lewis, T. C. Lee, F. J. Grunthaner, A. Madhukar, R. Fernandez, and F. F. J. Masania, Vac. Sci. Technol. B2,419 (1984).
[22] F. Glas, C. Guill, P. Henoc, and F. Haussy, Inst. Phys. Comf. Ser., No. 87; section 2, p.87 (1987).
[23] F. Houzay, C. Guille, J.M. Moisson, P. Henoc, and F. Barth, J. Cryst. Growth 81, 67 (1987).
[24] M. Tabuchi, S. Noda, and A. Sasai, Sci. &Tech. Mesoscopic Structures 379 (1992).
[25] D. Leonard, K. Pong, and P. Petroff, M. Phys. Rev. B 50 11687 (1994).
[26] J. Y. Marzin, J. M. Gerad, A. Izrael, and D. Barrier, Phys. Rev. Lett. 73, 716 (1994).
[27] J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Ander, and O. Vatel, Appl. Phys. Lett. 94, 196 (1994).
[28] N. Carlsson, K. Georgsson, L. Montelius, L. Samuelson, W. Seifert, and R. Wallenberg, J. Cryst. Growth 156, 23 (1995).
[29] C. M. Reaves, V. Bressler-Hill, S. Vaema,, W. H. Weinberg, and S. P. DenBaaes, Surf. Sci, 326, 209 (1995).
[30] M. Arita, A. Avramescu, K. Uesugi, I. Sumune, T. Nimai, H. Macjida, and N. Shimoyama, Jpn. J. Appl. Phys. 36, 4097 (1997).
[31] S. Tanaka, S. Iwai, and Y. Aoyagi, Appl. Phys. Lett. 69,4096 (1996).
[32] D. E. Aspnes, and A. A. Studna, Phys. Rev. B 7, 4605 (1973).
[33] B. O. Seraphin, and N. Bottka, Phys. Rev. 139, A560 (1965).
[34] D.E Aspnes, in Handbook on semiconductor, edited by T.S. Moss (North-Holland, New York, 1980).
[35] F.H. Pollak, in Handbook on semiconductors, edited by M. Balkanski (North-Holland, New York, 1980).
[36] D.E.Aspnes, in Handbook on Semiconductors, edited by M. Balkanski (North-Holland, New York, 1980).
[37] Y. Hamakawa, and T. Nishino, in Optical Properties of Solids: New Developments, edited by B. O. Seraphin (North-Holland, Amsterdam, 1976).
[38] F. H. Pollak, and O.J. Glembocki, in Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE, Bellingham, 1988).
[39] O.J. Glembocki, and B. V. Shanabrook, Superlatt. Microstructures 5, 603 (1989).
[40] H. Shen, S. H. Pan, F. H. Pollak, M. Dutta, and T. R. Aucoin, Phys. Rev. B 36, 9384 (1987).
[41] Y. S. Huang, H. Qiang, F. H. Pollak, J. Lee, and B. Elman, J. Appl. Phys. 70, 3808 (1991).
[42] A. P. Thorn, S. J. Shields, P. C. Klipstein, N. Apsley, and T. M. Kerr, J. Phys. C: Solid State Phys. 20, 4229 (1987).
[43] M. Vening, D. J. Dunstan and K. P. Homewood, Phys. Rev. B 48, 2412 (1993).
[44] F.H Pollak, H. Shen, Material Sci. and Engineering R 10, 275 (1993).
[45] D.E.fnes, in Handbook on Semiconductors, ed. by M. Balkanski, Vol. 2, Ch. 4A, pp.109 (North-Holland Publ. Co., New York (1980).
[46] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943, (1990).
[47] F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc. Lond. A 198, 205 (1949).
[48] M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).
[49] M.Grundmann, D. Bimberg , N. N. Ledenysov, et al. Thin Solid Films 267, 32 (1995).
[50] J. M. Moison, F. Houzay, F. Barthe, Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).
[51] S. Ruvimov, P. Werner, K. Scheerschmidt, J. Heydenreich, U. Richter, N. N. Ledenysov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, P. S. Kop’ ev, and Zh. I. Alferov, Phys. Rev. B 51, 14766 (1995).
[52] M. Grundmann, N. N. Ledenysov, J. Christen, J. Bohrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Stat. Sol. (b) 188, 249 (1995).
[53] H. Lee, R. Lowe-Webb, W. Yang, and P. C. Sercel, Appl. Phys. Lett. 72, 812 (1998).
[54] D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. DenBaars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).
[55] X. Z. Liao, J. Zou, D. J. H. Cockayne, R. Leon, and C. Lobo, Phys. Rev. Lett. 82, 5148 (1999).
[56] W. Wu, J. R. Tucker, G. S. Solomon and J. S. Harris, Jr., Appl. Phys. Lett. 71, 1083 (1997).
[57] G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., Phys. Rev. Lett. 76, 952 (1996).
[58] B. Legrand, B. Grandidier, J. P. Nys, D. Stievenard, J. M. Gerard and V. Thierry-Mieg, Appl. Phys. Lett. 73, 96 (1998).
[59] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce, and T. S. Jones, Phys. Rev. B 58, R15 981 (1998).
[60] N. Liu, J. Tersoff, O. Baklenov, A. L. Holmes, Jr., and C. K. Shih, Phys. Rev. Lett. 84, 334 (2000).
[61] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones S. Malik, D. Childs, and R. Murray, Phys. Rev. B 62, 10891 (2000).
[62] M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).
[63]M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 54, R2300 (1996).
[64] J. R. Downes, D. A. Faus, and E. P. O’Reilly, J. Appl. Phys. 82, 3754 ( 1997).
[65] J. D. Eshelby, Proc. Roy. Soc. Lond. A 241, 376 (1957).
[66] John H. Davies, J. Appl. Phys. 84, 1358 (1998).
[67] A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O'Reilly, J. Appl. Phys. 86, 297 (1999).
[68] D. A. Faux and G. S. Pearson, Phys. Rev. B 62, R4798 (2000).
[69] G. S. Pearson and D. A. Faux, J. Appl. Phys. 88, 730 (2000).
[70] John H. Davies, Appl. Phys. Lett. 75, 4142 (1999).
[71] A. D. Andreev and E. P. O'Reilly, Phys. Rev. B 62, 15851 (2000).
[72] D. E. Aspens and M. Cardona, Phys. Rev. B 17, 726 (1978).
[73] C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995).
[74] O. J. Glembocki and B. V. Shanabrook in Semiconductors and Semimaterials, edited by D. G. Seiler and C. L. Littler Vol. 67, p.222 (Academic Press, New York, 1992).
[75] P. Lautenschlager, M. Garriga, and M. Cardona, Phys. Rev. B 35, 9174, and P. Lautenschlager, M. Garriga and M. Cardona, Phys. Rev. B 36, 4813 (1987).
[76] P. B. Allen and M. Cardona, Phys. Rev. B 27, 4760 (1983).
[77] A. Manoogian and J. C. Woolley, Can. J. Phys. 62, 285 (1984).
[78] K. Asami, H. Asahi, S. I. Gonda, Y. Kamamura, and H. Tanaka, Solid State Commun. 70, 33 (1989).
[79] Y. P. Varshni, Physica 34, 149 (1967).
[80] M. Cardona, Modulation Spectroscopy (Academic-Press, New York, 1969 and references therein).
[81] Y. Yu Peter and M. Cardona, Fundamentals of Semiconductors , p. 305 (Springer-Verlag, Berlin, 1996).
[82] D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973).
[83] Y. Hamakawa and T. Nishino, in B. O. Seraphin (ed.), Optical Properties of Solids: New Developments, p.255 (North-Holland, Amsterdam, 1976).
[84] C.S. Lee NTU Master Thesis (2005).
[85] V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999).
[86] F.Y. Chang, J.D. Lee, and H.H. Lin, Electron. Let. 40, 179 (2003).
[87] N.T. Yeh, W.S. Liu, S.H. Chen, P. C. Chiu, and J.I. Chyi, Appl. Phys. Lett. 80, 535 (2002).
[88] A. Stintz, G.T. Liu, A.L. Gray, S.M. Delgado, and K.J. Malloy, J. Vac. Sci. Technol. B 18, 1496 (2000).
[89] H. Shen, and F.H. Pollak, Phys. Rev. B 42, 7097 (1990).
[90] O. Stier, M.G. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36454-
dc.description.abstract我們以溫變的光致螢光光譜(photoluminescence,PL)及光調制反射率光譜(photoreflectance,PR)來研究砷化銦/砷化鎵(InAs/GaAs)自我組成量子點結構的光學性質。我們的樣品(樣品Sm,樣品Sc和樣品St)是以史傳斯基─克拉斯坦諾夫長晶模式(Stranski–Krastanov growth mode)為基礎的氣相源分子束磊晶成長術(gas-source molecular-beam epitaxy)成長在長晶方向在(100)面砷化鎵基板(有n+摻雜),成為有三種不同晶格常數夾層的堆積量子點的雷射結構。三個樣品的夾層樣品分別為晶格匹配(Sm)、壓縮應力(Sc)和弛張應力(St).我們可以看到後面兩個量子點有較高的螢光光譜能量. 因此我們可以瞭解由不同晶格常數的夾層形成之應力場的影響.
樣品Sm,樣品Sc和樣品St在室溫時的主要發光能量是在0.99eV 1.004eV 以及0.998eV。在光致螢光光譜中,我們觀察到兩個發光的特徵,而且在高能量的部分呈現出很長的延伸。另外,在溫變的光螢光光譜實驗當中,我們接著觀察並討論到總發光強度隨溫度增強的現象。因此,我們了解在抑制量子點發光的機制當中,熱游離與載子的重新分布都扮演重要的角色。同時,為了更確定在量子點中載子的機制,我們也進行了激發光源強度變化的能態載子注入光譜實驗並找出了第二群量子點的形成。
在光調制反射率光譜實驗中,我們明顯地觀察到從量子點所產生的光學躍遷,並且分辨出基態與激發態的光學特徵。同時,從溫變實驗而得到各個能態的能量也相當吻合由晶格受熱擴張與電子晶格交互作用而推衍出的法西尼公式(Varshni’s formula)。由實驗所得到結果可知道出砷化銦/砷化鎵自我組成量子點的密度與均勻性受到夾層的磷化銦鎵材料的影響相當明顯。
為了了解我們從溫變光致螢光光譜及光調制反射率光譜實驗所得到的光學特徵,可以由原子力顯微鏡(Atomic Force Microscopy, AFM)來粗略地估算量子點的大小去進行單一半高金字塔形狀量子點的電子性質的計算。最後我們得到計算的能態與證實了對於能態來說應力夾層磷銦化鎵的影響會小於量子點尺寸的影響。
zh_TW
dc.description.abstractThe optical properties are studied with temperature dependent photoreflectance (PR) and photoluminescence (PL) experiments on InAs/GaAs quantum dot (QD) structures. The samples (Sm, Sc, and St) are grown by the gas-source molecular-beam epitaxy in the Stranski–Krastanov growth mode on an n+-doped GaAs (100) substrate and three multi-QD-stack lasers structure are deposited with different lattices InGaP cladding layer. Three QD samples with lattice-matched (Sm), compressive-strained (Sc) and tensile- strained (St) for the cladding layer were grown, and the later two QDs samples have the higher transition energy of the luminescence. Therefore, we could realize the effect of strain field reducing to different lattices cladding layer.
At room temperature, the major peaks in the PL spectra of the QD samples are 0.989eV for Sm, 1.004eV for Sc, and 0.998eV for St, respectively. Two peaks with long-tail on high energy portion are observed in PL spectra and integrated intensity is also discussed. Therefore, the thermionic emission plays important roles in the PL quenching. To determine the mechanism of the carriers in QDs, state filling experiments are carried out and verify the second group of InAs QDs.
From the PR experiments, optical transitions originated from the InAs QDs are observed. Transition energies of the ground state and excited states are verified. The temperature dependence transition energies following the Varshni’s semi-empirical formula was attributed to the dilation of lattice and electron-lattice interaction. The results from PL and PR spectra reveal that size and uniformity of InAs/GaAs QDs are affected by InGaP cladding layers.
In order to determine the transition energies observed from the temperature dependent PL and PR experiments, the AFM images have been carried out to estimate the diameters and heights roughly of the samples for theoretical calculations of the InAs/GaAs single QD with the truncated pyramidal shape. Consequently, the theoretical calculations of the InAs/GaAs single QD with the truncated pyramidal shape are carried out the ground state energy transition of InAs QD and verify that the effect of strain reducing to the mismatch of the cladding layer is lower than the effect reducing to the size distribution for the transition energy feature.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:01:27Z (GMT). No. of bitstreams: 1
ntu-94-R92941039-1.pdf: 3163345 bytes, checksum: a9b89520c23fe3b244b055b070e4f165 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents誌 謝 i
摘 要 iii
Abstract v
Contents vii
List of Figures ix
List of tables xiii
Chapter I Introduction 1
Chapter II Structural Properties of Self-Assembled QDs 9
2.1 Formation of self-assembled quantum dots 9
2.2 Structure features of self-assembled InGaAs quantum dots 10
2.3 Strain in the quantum dots 15
2.3.1 Strain field distribution 15
2.3.2 Properties strain effect on electronic properties 23
Chapter III Theory Background 27
3.1 Photoluminescence 27
3.2 Temperature Dependence 28
3.3 Modulation Spectroscopy 31
3.2.1 Lineshape consideration 32
3.2.2 Critical Points 34
3.2.3 Lineshapes of Third-derivative lineshape 36
3.2.4 First-derivative lineshape 39
Chapter IV Experiments 43
4.1 Sample Preparation 43
4.2 Photoluminescence System 52
4.3 Photoreflectance System 54
Chapter V Results and Discussion 55
5.1 Photoluminescence 55
5.1.1 Power dependence 55
5.1.2 Temperature dependence 59
5.2 Photoreflectance 68
5.3 Atomic force microscopy 80
Chapter VI Conclusion 85
Appendix 87
Reference 93
dc.language.isoen
dc.subject調制光譜zh_TW
dc.subject銦化鎵zh_TW
dc.subject量子點zh_TW
dc.subject夾層zh_TW
dc.subjectquantum doten
dc.subjectcladding layeren
dc.subjectphotoreflectanceen
dc.subjectInAsen
dc.title不同磷化銦鎵夾層下砷化銦量子點之光學特性zh_TW
dc.titleOptical Properties of InAs Self-Assembled Quantum Dots with Different InGaP Cladding Layeren
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄(Hao-Huong Lin),陳永芳(Yong-Fang Chen),黃鶯聲(Ying-Sheng Huang),賴志明(Chih-Ming Lai)
dc.subject.keyword銦化鎵,量子點,夾層,調制光譜,zh_TW
dc.subject.keywordInAs,quantum dot,cladding layer,photoreflectance,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
3.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved