Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36435
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃維信(Hwang, Wei- Shien)
dc.contributor.authorTing-Ying Chouen
dc.contributor.author周鼎贏zh_TW
dc.date.accessioned2021-06-13T08:00:45Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citationHung, L. P., Boundary Integral Method in 2-D Potential Flow Problem, National Taiwan Univ., Taipei, 2000.
Jaswon, M. A., “Integral Equation Methods in Potential Theory I”, Proc. Roy. Soc. Lond., Vol. A275, pp.23-32, 1963.
Symm, G. T.,” Integral Equation Methods in Potential Theory II”, Proc. Roy. Soc. Lond., Vol. A275, pp.33-46, 1963.
Rizzo, F. J., “An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics”, Quart. Appl. Math., Vol. 25, pp. 83-95, 1967.
Curse, T. A. and Rizzo F. J., “A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem I”, J. Math. Anal. App., Vol. 22, pp. 244-259, 1968.
Cruse, T. A., “A Direct Formulation and Numerical Solution of the Transient Elastodynamic Problems II”, J. Math. Anal. App., Vol. 22, pp. 341-355, 1968.
Symm, G. T., Treatment of Singularities in the Solution of Laplace Equation by An Integral Equation Method, National Physics Laboratory Report No.: NAC31, 1973.
Landweber, L. and Macagno, M., Irrotational Flow about Ship Forms, IIHR report, U. of Iowa, No.123, 1969.
Hwang, W. S., “Hyper-singular Boundary Integral Equations for Exterior Acoustic Problems”, J. Acoustic Soc. Am., Vol. 101, pp. 3336-3342, 1997.
Huang, Y. Y., The Study on Potential Flow by Nonsingular Boundary Element Methods, National Taiwan Univ., Taipei, 1997.
Hwang, W. S. and Huang, Y. Y., “Non-singular Direct Formulation of Boundary Integral Equations for Potential Flows”, Int. J. Numer. Mech. Fluids, Vol. 26, pp. 627-635, 1998.
Chang, J. M., “Numerical Studies on Desingularized Cauchy’s Formula with Applications to Interior Potential Problems”, Int. J. Numer. Mech. Engng., Vol. 46, pp. 805-824, 1999.
Yang, S. A., “On the Singularities of Green’s Formula and Its Normal Derivative with An Application to Surface Wave Body Interaction Problems”, Int. J. Numer. Mech. Engng., Vol. 47, pp. 1841-1864, 2000.
Huang, Q. and Cruse, T. A., “Some Notes on Singular Integral Techniques in Boundary Element Analysis”, Int. J. Numer. Meth. Engng., Vol. 36, pp. 2643-2659, 1993.
Johnston, P. R., “Semi-sigmoidal Transformations for Evaluation Weakly Singular Boundary Element Integrals”, Int. J. Numer. Mech. Engng., Vol. 4, pp.1709-1730, 2000.
Johnston, P. R. and Elliott, D., “Error Estimation of Quadrature Rules for Evaluating Singular Integrals in Boundary Element Problems”, Int. J. Numer. Meth. Engng., Vol. 48, pp. 949-962, 2000.
Ko, C. H., Numerical Simulation of Three Dimensional Water Sloshing Problems Using Boundary Element Methods, National Taiwan Univ., Taipei, 1998.
Hwang, W. S., “A Boundary Node Method for Airfoils Based on the Dirichlet Condition”, Comput. Meth. Appl. Mech. Engng., Vol. 190, pp. 1679-1688, 2000.
Lutz, E. D., “Systematic Derivation of Contour Integration Formulae for Laplace and Elastostatic Gradient BIE’s”, Comput. Mech., Vol. 14, pp.339-353, 1994.
Hwang, W. S., Study Note.
Whittaker, E. T. and Robinson, G., The Newton-Cotes Formulae of Integration, §76 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed., Dover, New York, pp. 152-156, 1967.
Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill, New York, pp. 323-325, 1956.
Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, Dover, New York, pp.888-890, 1972.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36435-
dc.description.abstract本論文旨在利用理論解析推導三維無奇異性瑕積分的邊界積分方程式,並配合數值模擬加以探討。有鑒於一般三維邊界元素法對於高階元素的瑕積分處理模式,多以適應性積分或極座標轉換為主,本論文提出另一種計算模式,將瑕積分轉換為一般積分加上部分沿著元素邊界的線積分,使得在瑕積分的計算能夠更精確及更簡潔。
其中,利用高斯通量定理,消除格林函數之奇異性。作法是僅需對原有的奇異性核函數加入一項使其異性消除,同時再將函數的解析積分值減去原方程式。由於格林函數的奇異性經過數學上的技巧加以消除,因此當求解未知數時已經不需要再假設形狀函數,即可直接使用物體真實的外型來做計算,也就是直接將物體上分佈的積分點視為滿足邊界條件的節點。如此,不但在計算的過程中大幅地被簡化,從此奇異積分項也將不再需要特別處理,使得數值程式得以更簡潔的被撰寫。
最後,本文將探討本篇論文所提出的理論解析,在實際數值上使用平滑邊界模型及非平滑邊界模型的特性。
zh_TW
dc.description.abstractThe main purpose of this thesis is to present an efficient analysis for singular integrals of three dimensional boundary integral equations. Numerical analysis is used for this discussion. In treating a high order element which has a singular integral, most three dimensional boundary element methods use adaptive integration or polar coordinates transformation. This thesis also includes an alternative method for calculating boundary integral equations. The method transforms the singular integral into a desingularized integral plus a linear integral which is along the boundary of the element; thus, it is more accurate and simple.
Two kinds of eliminating the singularity are mentioned. One is for Green’s function in elements by using linear integrals; the other is for its normal derivative by the divergence theorem. The method is to add a term into the original singular kernel while it subtracts its analytical solution from the original equation. Since the singularity of Green’s function can be eliminated by such a mathematical technique, shape function does not need to be supposed while solving the unknown. The calculation can be directly applied to the real shape of the object by taking the integral points distributed on the object as nodes that satisfy boundary conditions. Hence, not only the calculation is significantly simplified but also singularity terms do not require special processing. Therefore, the numerical programming is much easier. Applications of numerical theoretic analysis on smooth and non-smooth boundary models will be proposed and discussed at the end.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:00:45Z (GMT). No. of bitstreams: 1
ntu-94-R91525023-1.pdf: 37458509 bytes, checksum: 37792f593158aa19e36792026c5716af (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract i
Acknowledgements ii
Table of Contents iii
List of Figures vi
Prologue xv
Chapter 1:Introduction 1
1.1 Overview 1
1.2 Motivation and Objectives 3
1.3 Literature Survey and Review 4
1.4 Research Methods 6
Chapter 2:Theoretical Analysis 8
2.1 The Divergence Theorem and Green’s identities 8
2.2 The Boundary Integral Equation 10
2.3 Singular Integrals with Doublet Distribution 15
2.4 Singular Integrals with Source Distribution 20
2.5 Nearly Singular Integrals 25
Chapter 3:Numerical Analysis 28
3.1 Numerical Integration 28
3.1.1 Newton-Cotes Formula 28
3.1.2 The Gaussian Quadrature 31
3.1.3 The Lobatto Quadrature 32
3.2 Grid Generation 33
3.3 The Boundary Integral Method 36
3.3.1 Discrete Non-Smooth Boundary Model 37
3.3.2 Discrete Smooth Boundary Model 45
3.4 Numerical Implementation 49
3.4.1 Analysis the Relative Source Point p and Field
Point q on Surface 50
3.4.2 Dirichlet Boundary Condition 67
3.4.2.1 Spheroid Model 68
3.4.2.2 Three Dimensional Rectangle Model 69
3.4.3 Neumann Boundary Condition 76
3.4.3.1 Spheroid Model 76
3.4.3.2 Three Dimensional Rectangle Model 78
3.4.4 Mix Boundary Condition 84
3.4.4.1 Spheroid Model 84
3.4.4.2 Three Dimensional Rectangle Model 86
3.4.4.3 Contrast between B.E.M and B.I.M 92
Chapter 4:Conclusions and Suggestions 97
Bibliography 100
Appendix A:Error in Three Dimensional Rectangular Model i
I. Dirichlet Problem i
A. Uniform Grid i
B. Non-uniform Grid vi
II. Neumann Problem xviii
A. Uniform Grid xviii
B. Non-uniform Grid xxiv
III. Mix Problem xxxv
A. Uniform Grid xxxv
B. Non-uniform Grid xli
Appendix B:Error in Spheroid Model liii
I. Dirichlet Probleml iii
II. Neumann Problem lvi
III. Mix Problem lix
dc.language.isoen
dc.title以非奇異性暇積分改善三維邊界積分法zh_TW
dc.titleAn Innovation of 3-D non-singular boundary integral equationsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝傳璋(Tse Chuan- Cheung),王昭男(Wang Chao- Nan)
dc.subject.keyword邊界元素法,邊界積分式,奇異積分,內流場,zh_TW
dc.subject.keywordBoundary Element Method,Boundary Integral Equation,Singular Integral,Internal Flow,en
dc.relation.page179
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
36.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved