Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36425
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳先琪(Wu, Shian-chee)
dc.contributor.authorYu-Ching Chienen
dc.contributor.author簡鈺晴zh_TW
dc.date.accessioned2021-06-13T08:00:23Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citationAlam, M. G. M., Jahan, N., Thalib, L., Wei, B. and Maekawa, T. (2001) Effects of envionmental factors on the seasonally change of phytoplankton populations in a closed freshwater pond. Environ. Int. 27: 363-371.
Burmaster, D. (1979) The continuous culture of phytoplankton: mathematical equivalence among three steady state models. Am. Nat. 113: 123-134.
Clarke, G. L. (1939) The utilization of solar energy by aquatic organisms. Problems in lake biology. Publ. Amer. Assoc. Adv. Sci. 10: 27-38.
Coles, J. F. and Jones, R. C. (2000) Effects of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J. Phycol. 36: 7-16.
Droop, M. R. (1973) Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264-272.
Droop, M. R. (1983) 25 years of algal growth kinetics. Botanica Marina. 26: 99-112.
Elliott, J. A., Irish, A. E., Reynolds C. S. and Tett, P. (2000) Modelling freshwater phytoplankton communities: an exercise in validation. Ecol. Model. 128: 19-26
Goldman, C. R., and A. J. Horne. (1983) Limnology. McGraw-Hill, New York, NY.
Goldman, J. C. and Carpenter, E. J. (1974) A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19: 756-766.
Graham, L. E. and Wilcox, L. W. (2000) Algae: Phytoplankton Ecology, pp.574. Prentice-Hall, Inc. Upper Saddle River, NJ 07458.
Grover, J. P. (1990) Resource competiton in a variable environment: phytoplankton growing according to Monod’s model. Am. Nat. 136: 771-789.
Grover, J. P. (1991) Algae grown in non- steady state continuous culture: Population dynamics and phosphorus uptake. Verh. Internat. Verein. Limnol. 24: 2661- 2664.
Harper, D. M.(1992) Eutrophication of Freshwaters:Principles, Problems and Restoration. Chapman & Hall.
Harris, G. P. (1986) Phytoplankton Ecology. Chapman & Hall, London, UK.Grover, J. P. (1990) Resource competition in a variable environment: phytoplankton growing according to Monod’s model. Am. Nat. 136: 771-789.
Hui, C., Li, Z., and Yue, D. (2004) Metapopulation dynamics and distribution, and environmental heterogeneity induced by niche construction. Ecol. Model. 177: 107-118.
Huisman, J., and F. J. Weissing. (1995) Competition for nutrients and light among phytoplankton species in a mixed water column: theoretical studies. Wat. Sci. Tech. 32(4):143-147.
Huisman, J., and F. J. Weissing. (1999) Biodiversity of plankton by species oscillations and chaos. Nature(London) 402: 407-410
Huisman, J., and F. J. Weissing. (2000) Coexistence and resource competition. Nature (London) 407: 694.
Huisman, J., and F. J. Weissing. (2001b) Fundamental unpredictability in multispecies competition. Am. Nat. 157(5): 488-494.
Ibelings, B. W., Kroon, B. M. A. and Mur, L. R. (1994) Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating. photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. New Phytol. 128: 407-424.
Knoechel, R. and Kalff, J. (1975) Algal sedimentation: the cause of a diatom- blue-green succession. Verh. Internati. Verein. Theor. Angew. Limnol. 19: 745-754.
Kratz, W. A. and Myers, J. (1995) Nutrition and growth of several blue-green algae. Am. J. Bot. 42: 282-287.
Laland, K.N., Odling-Smee, F.J., Feldman, M.W. (1999) Evolutionary consequences of niche construction and their implicatins for ecology. Proc.Natl. Acad. Sci. USA. 96: 10242-10247.
León, J. A., and D. B. Tumpson (1975) Competition between two species for two complementary or substitutable resources. J. Theore. Biol. 50: 185-201.
Mur, L.R. and Schreurs, H. (1995) Light as a selective factor in the distribution of phytoplankton species. Wat. Sci. Tech. 32(4): 25-34.
Oliver, R. L. and Ganf, G. G. (1988) The optical properties of a turbid reservoir and its phytoplankton in relation to photosynthesis and growth (Mount Bold Reservoir, South Australia). J. Plankton Res. 10: 1155-1177.
Poole, H. H. and Atkins, W. R. G.(1929)Photo-electric measurements of submarine illumination throughout the year. J. Mar. Biol. Assoc. U. K. 16: 297-324.
Redfield, A. C. (1958) The biological control of chemical factors in the environment. Am. Sci. 46: 205-221.
Reynolds, C. S. (1984) The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.
Reynolds, C. S., Irish, A. E. and Elliott, J. A. (2001) The ecological basis for simulating phytoplankton responses to environmental change (PROTECH) Ecol. Model. 140: 271-291.
Rhee, G-Y. (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495-506.
Rhee, G-Y. (1978) Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23: 10-25.
Schindler, D. W. (1978) Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr. 23: 478-486.
Schnor, J. L. (1996) Environmental Modeling: Fate and Transport of Pollutants in Water, Air and Soil, pp.207. John Wiley & Sons, Inc. New York.
Sephton, D. H. and Harris, G. P. (1984) Physical variability and phytoplankton communities: VI. Day to day changes in primary productivity and abundance. Arch. Hydrobiol. 102: 155-175.
Sommer, U. (1985) Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnol. Oceanogr. 30(2): 335-346.
Sommer, U. (1989) Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnol. Oceanogr. 34(7): 1162-1173.
Sommer, U. (1991) A comparison of the droop and the monod models of nutrient limited growth applied to natural-populations of phytoplankton. Funct. Ecol. 5(4): 535-544.
Sterner, R. W. and Grover, J. P. (1998) Algal growth in warm temperate reservoirs: Kinetic examination of nitrogen, temperature, light, and other Nutrients. Wat. Res. 32(12): 3539-3548.
Tilman, D. (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology. 58: 338-348.
Tilman, D. (1981) Tests of resource competition theory using four species of Lake Michigan. Ecology 62(3): 802-815.
Tilman, D. (1982) Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.
Tilman, D. (1994) Competition and biodiversity in spatial structured habiats Ecology. 75(1): 2-16.
Vezjak, M., Savsek, T. and Stuhler, E. A. (1998) System dynamics of eutrophication processes in lakes. Eur. J. Oper. Res. 109: 442-451.
Von Liebig, J. (1840) Die organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie Friedrich Vieweg, Braunschweig.
Wetzel, R. G. (2001) Limnology: Lake and River Ecosystems. Academic Press, 3rd edition. California.
Wyman, M. and Fay, P. (1986) Underwater light climate and the growth and pigmentation of planktonic blue-green algae(cyanobacteria) II. Proc. R. Soc. Lond., B 227: 367-380.
吳俊宗,周晉文(1996) ,翡翠水庫浮游藻與水質關係,台北翡翠水庫管理局。
吳俊宗,周晉文(1997) ,翡翠水庫浮游藻與水質關係(II),台北翡翠水庫管理局。
吳俊宗,高麗珠(1999) ,翡翠水庫浮游藻與水質關係(IV) ,台北翡翠水庫管理局。
吳俊宗,高麗珠,王永昇(2003),翡翠水庫藻類與水質關係之長期監測(III),台北翡翠水庫管理局。
吳俊宗,高麗珠,周晉文(1998) ,翡翠水庫浮游藻與水質關係(III),台北翡翠水庫管理局。
吳俊宗,高麗珠,陳秀如(2000),翡翠水庫浮游藻與水質關係研究 (V),台北翡翠水庫管理局。
吳俊宗,高麗珠,黃文亞(2001),翡翠水庫藻類與水質關係之長期監測(I),台北翡翠水庫管理局。
吳俊宗,高麗珠,黃文亞(2002),翡翠水庫藻類與水質關係之長期監測(II),台北翡翠水庫管理局。
林明郁(2004),翡翠水庫藻類族群結構分析及分層系統動態模擬,碩士論文,國立台灣大學環境工程學研究所。
許秋瑾,秦柏強,陳偉民,陳宇煒,高光(2001)太湖藻類生長模型研究,湖泊科學,13 (2),149-156。
陳佳杏(1998),溫度對單細胞藍綠藻生長率的影響與族群大小的季節性變化,碩士論文,國立海洋大學海洋生物研究所
廖文蓓(2002),翡翠水庫中藻類種群消長之動態模擬,碩士論文,國立台灣大學環境工程學研究所。
翡翠水庫操作年報,1995~2003,台北翡翠水庫管理局。
黄蒨菡(1992b),銅綠微囊藻在水庫中大量繁殖之生態因子的研究,碩士論文,國立台灣大學植物研究所。
中央氣象局網站 (http://www.cwb.gov.tw/)
中央研究院植物研究所網站 (http://www.sinica.edu.tw/~dbalgae/)
台灣地區水庫浮游藻類圖鑑,1996,行政院環境保護署環境檢驗所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36425-
dc.description.abstract水庫水質之良窳一直是國內外環境保護及水資源相關單位關切的問題,而其中藻類優養問題適為其最。吾等必須建立預測其發生趨勢的能力,方能採取適當預防優養問題發生措施。
自然水體中藻類種數繁多,其生長受到許多環境因子所作用,故欲了解藻類消長之原因,首要釐清藻類與環境因子間之相關性。本研究希望藉翡翠水庫大壩之藻類族群為例,探討藻類多樣性之原因。本研究以採樣調查及模式模擬的方法欲釐清「環境異質性是否有利於生物多樣性」的疑問。研究係以採翡翠水庫大壩為研究區域,以分層採樣之結果,分析探討藻類在大壩分層的生長情形、藻類與浮游動物之間之關係以及藻類和水質之關係。本研究有別於以往完全混合的系統模式,並將環境梯度及藻類層間混合納入藻類動態系統模式中。
經統計分析藻類與環境因子之相關性,發現藻類週期性的消長主要與季節性物理因子相關,其中藻類的沉降特性與水體混合程度為藻類生長之重要條件。統計結果顯示Shannon-Wiener Index生物多樣性指標與環境溫度梯度因子有相關性。總藻模擬結果來檢討限制因子對藻類的生長影響時,發現磷之供應是其中較為關鍵的因素。三種藻共存模擬可以模擬出藻類週期性的消長,推測呈現週期性的變化的主要原因週期性的水體混合機制所致。本研究認為當環境因子具有適當的時間變異則有利於不同藻種共存。
zh_TW
dc.description.abstractWater quality in reservoirs is an important issue of concern in terms of water supply nowadays. Eutrophication is a prevailing problem threating the water quality of reservoirs in Taiwan. The ability to forecast the tendency of phytoplankton growth must be established, then the actions to prevent eutrophication can be taken.
There is great number of phytoplankton species in nature water bodies, and many factors interactively affect their growth. How they affect the growth of phytoplankton was examined in this study. First, the relationships between phytoplankton growth and environmental factors must be identified. Feitsui Reservoir is a model water body uesd to study the relationships described above. Second, whether environment gradient is benefitial to biodiversity or not, sampling and modeling must be done in this study to determine. Sampling at different depth in Feitsui Reservoir was undertaken to know the spatial distribution characteristics of water quality, phytoplankton and zooplankton growth. A conceptual model including stratified system was established to mimic the reservoir water column, which showed gradients of environmental factors.
According to the statistic analysis, it was found that seasonal growth and decline of algae were related to physical environmental factors which change seasonally. The mobility of phytoplankton and the water column mixing condition are both instrumental in creating the environment of phytoplankton growth. The biodiversity index, Shannon-Wiener Index, was related to temperature gradient according to the results of statistic analyses. From the simulating results of total amount of algae, phosphorus supply was found an important factor for growth. The model of coexistence of three types of algae is able to simulate algal succession. Periodically water mixing is the driving force of algal succession and beneficial to algae coexistence.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:00:23Z (GMT). No. of bitstreams: 1
ntu-94-R92541109-1.pdf: 2479324 bytes, checksum: 2c160519767f7b468f2584474d29d970 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目 錄
中文摘要
英文摘要
目錄 I
表目錄 V
圖目錄 VI
第一章 前言 ........................................1
1-1 研究源起 ........................................1
1-2 研究目的 ........................................2
第二章 文獻回顧 ........................................5
2-1 藻類生長因子.....................................5
2-1-1 物理因子 ........................................5
2-1-1-1 光線 ........................................5
2-1-1-2 溫度 ........................................8
2-1-1-3 水體混合的影響 ...............................9
2-1-2 化學因子 .......................................11
2-2 藻類在水庫中之宿命 ..............................14
2-2-1 沉降作用 .......................................15
2-2-2 原生動物攝食 ..............................16
2-3 環境因子對藻類族群結構的影響 ............17
2-3-1 種間競爭與共存理論 ..............................17
2-3-2 環境因子之空間梯度 ..............................18
2-3-3 環境因子隨時間變化 ..............................19
2-4 藻類動態模擬之相關文獻 .....................19
第三章 研究方法 .......................................23
3-1利用統計軟體彙整翡翠水庫水質與藻類消長之關係........ 24
3-1-1統計分析方法 .......................................24
3-1-1-1相關分析 .......................................24
3-1-1-2集群分析 .......................................25
3-1-2水質因子間之相關性分析 ..............................26
3-1-3探討各種藻與各因子之相關性分析 .....................26
3-1-4探討在不同水體各藻種與水質之關係 ............26
3-1-4-1以溫度梯度、混合深度及表層水溫為因子分類水體環境 ...............................................27
3-1-4-2藻類在各月份集群內和水質因子之相關性分析..........30
3-1-5藻類分類............................................30
3-2採樣及水質分析方法 ...................................31
3-2-1採樣架構............................................31
3-2-2採樣方法............................................31
3-2-3分析方法............................................31
3-2-3-1水質分析方法......................................31
3-2-3-2藻類計數方法......................................33
3-3建立藻類生長動態模式之方法 ..........................37
3-3-1系統建立............................................37
3-3-2分層模式架構 .......................................40
3-3-2-1藻類生長速率......................................40
3-3-2-2藻類死亡速率......................................41
3-3-2-3藻類層間混合.......................................41
3-3-3藻類分類.............................................41
3-3-4磷鹽濃度之變化.......................................42
3-3-5分層藻類生長模式....................................43
3-3-6模式參數及輸入之實測資料.............................45
3-3-6-1混合係數 ........................................45
3-3-6-2溫度、透明度、深層磷鹽濃度 .....................47
3-3-6-3藻類體積 ......................................47
第四章 結果與討論 ..............................49
4-1 利用統計軟體分析翡翠水庫水質與藻類消長之關係 ...49
4-1-1 藻類與水質之歷年變化...........................49
4-1-2 水質因子間之相關性分析.........................53
4-1-3 探討各種藻類與各因子之相關性分析................55
4-1-4 藻類在各月份集群內和水質因子之相關性分析........55
4-1-4-1 利用集群分析將1至12月份分成3大類................58
4-1-4-2 藻類與水質條件之相關性分析 ....................63
4-1-5 藻類集群分析分成三大類.........................64
4-1-6 由生物多樣性指標及相關性分析結果討論藻類之共存原因 ................................................71
4-2 翡翠水庫分層採樣結果............................75
4-2-1 水質項目分析結果 ..............................75
4-2-2 浮游生物分佈情形 ..............................78
4-2-3 浮游藻類與浮游動物之關係 .....................85
4-2-4 反應性磷組成之討論 ..............................85
4-3 翡翠水庫藻類消長之模擬 .....................89
4-3-1 大壩採樣點表水總藻類生長模擬....................89
4-3-1-1 總藻模擬結果 ..............................89
4-3-1-2 參數範圍檢討 ..............................89
4-3-2 總藻模擬結果討論 ..............................93
4-3-2-1 總藻參數的代表性 ..............................93
4-3-2-2 藻類生長模擬之討論 ..............................93
4-3-2-3 參數敏感度分析 .............................100
4-3-3 三種藻類共存模擬 .............................107
4-3-3-1 不同藻種的生長參數 .............................107
4-3-3-2 模擬結果與討論.................................108
第五章 小結與後續工作 .............................117
5-1 結論 ......................................117
5-2 建議 ......................................118
參考文獻 ...............................................121
附錄A 各藻種數量隨時間消長圖 ...................附-1
附錄B 水質隨時間之分布圖 ............................附-8
附錄C 藻類在不同水體下與環境因子之相關性分析 .........附-13
附錄D 兩次採樣所出現之藻類種類及其百分率頻度 (%)......附-18
附錄E 藻類圖片及型態資料 ...........................附-23
附錄F 總藻模擬模式....................................附-33
附錄G 模式層間混合係數計算值與藻類體積模擬結果(2000~2003年) .............................................附-40

表 目 錄
表 3- 1水質分析項目、保存方式、保存時間及分析方法一覽表...32
表 3- 2 模式參數名稱、符號、單位及來源整理................44
表 3- 3 圖3-8、式3-16 與式 3-17之符號意義 ............46
表4- 1 藻類名稱、藻類大小、藻類代號表....................52
表4- 2 水質因子之相關性分析..............................54
表4- 3 各藻種與各項水質因子初步的相關性分析結果ㄧ覽表 ...56
表4- 4 1995年至2003年各月份之平均溫度梯度、平均混合深度與平均表層水溫................................................59
表4- 5 1995年至2003年各月份之標準化之平均溫度梯度、平均混合深度與平均表層水溫 .......................................60
表4- 6 集群分析結果之詳細資料............................61
表4- 7 藻類集群分析結果之詳細資料 .....................66
表4- 8 各藻類(Algae_1~Algae_3)於不同水體(Cluster 1~Cluster 3)下藻類之相關因子之簡表 ..............................67
表4- 9 藻種數與Shannon-Wiener index相關性分析...........74
表4- 10 Shannon-Wiener index與環境因子之相關性分析......74
表4- 11 總藻模擬式參數校正結果和文獻值之比較 ............91
表4- 12 不同藻種共存模擬生長參數校正結果.................110

圖 目 錄
圖 2- 1 不同波長之光線隨深度光量之變化圖...................7
圖 2- 2 夏天分層明顯的湖泊其光線及溫度之分布圖.............7
圖 2- 3 翡翠水庫大壩表水無機氮磷比值 .....................14
圖3- 1論文研究架構圖......................................23
圖3- 2 混合深度說明之示意圖 ..............................28
圖3- 3 將12個月份之溫度梯度、混合深度及表層水溫為因子進行集群分析之流程圖 .......................................29
圖3- 4 藻類定性片製作流程 ..............................34
圖3- 5 藻類定量片製作流程 ..............................35
圖3- 6 模式分層系統概念圖 ..............................39
圖3- 7 分層系統動態模擬示意圖............................39
圖3- 8 混合係數推求模式圖 ..............................42
圖4- 1 藻類數量及體積之歷年變化圖 .....................51
圖4- 2 藻種數之歷年變化圖 ..............................51
圖4- 3 以平均溫度梯度、平均混合深度及平均表水溫度為因子將1至12月分成3類之集群分析圖 ..............................60
圖4- 4 各水體(Cluster 1~Cluster 3)的溫度梯度、表水溫度及混合深度 作圖 ................................................62
圖4- 5 Cluster 1、2、3之示意圖 .....................63
圖4- 6 藻類集群分析分類圖 ..............................66
圖4- 7 Algae_1~Algae_3體積百分率的時間分布圖 ............70
圖4- 8 Algae_1~Algae_3數量百分率的時間分布圖 ............70
圖4- 9 Shannon-Wiener Index隨時間之變化圖 ............73
圖4- 10 兩次採樣其溫度、pH及溶氧隨深度變化圖 ............76
圖4- 11 兩次採樣其濁度、比電導度、總磷(TP)及反應性磷(RP)濃度隨深度變化圖 .......................................79
圖4- 12 兩次採樣其硝酸鹽氮、氨氮及有機氮(org-N)濃度隨深度變化圖 ................................................79
圖4- 13 兩次採樣其硬度、鈣及鎂濃度隨深度變化圖............80
圖4- 14 兩次採樣其總有機碳(TOC)、浮游動物及浮游藻類密度隨深度變化圖 ................................................80
圖4- 15 第一次採樣之藻類數量隨深度分佈圖 ............83
圖4- 16第一次採樣之藻類體積隨深度分佈圖..................83
圖4- 17 第二次採樣之藻類數量隨深度分佈圖..................84
圖4- 18 第二次採樣之藻類體積隨深度分佈圖 ............84
圖4- 19 第一次採樣不同深度之浮游動物與浮游藻類相關性 ...87
圖4- 20 第二次採樣溶解反應性磷、總反應性磷及總磷之深度分佈圖 ................................................88
圖4- 21 第二次採樣溶解反應性磷(DRP)及懸浮性反應性磷(SRP)之百分率 ................................................88
圖4- 22 1996~1999年總藻校正結果 .....................90
圖4- 23 2000~2003年總藻模擬結果 .....................90
圖4- 24 上層總藻體積模擬值與比生長速率隨時間變化情形 ...96
圖4- 25 上層藻生長速率與光線、營養鹽限制因子(GI1、GP1)的關係 ................................................96
圖4- 26 上層及下層總藻體積模擬值比較圖 ............97
圖4- 27 上層及下層總藻生長速率模擬值比較圖 ............97
圖4- 28 下層藻生長速率與光線、營養鹽限制因子(GI2、GP2)的關係 ................................................98
圖4- 29 表層光強度輸入值與上下層光強度模擬值隨時間變化圖 ................................................98
圖4- 30上層磷及下層磷濃度模擬值與深層磷濃度隨時間之變化圖 ................................................99
圖4- 31 2000~2003年上下層間混合係數kmix12與下深層間混合係數kmix20之比較圖 .......................................99
圖4- 32 參數kmax對上層總藻體積之敏感度分析 ...........102
圖4- 33參數kmax對上層磷濃度之敏感度分析 ...........102
圖4- 34 參數KI的敏感度分析 .............................103
圖4- 35參數KP的敏感度分析 .............................103
圖4- 36 參數A的敏感度分析 .............................104
圖4- 37 參數E/R的敏感度分析 .............................104
圖4- 38 參數kM的敏感度分析 .............................105
圖4- 39 參數kS的敏感度分析 .............................105
圖4- 40 參數Y的敏感度分析 .............................106
圖4- 41 參數α的敏感度分析 .............................106
圖4- 42 1996~1999年三種藻體積隨時間之消長圖 ...........109
圖4- 43 1996~1999年三種藻體積校正結果 ...........109
圖4- 44 1996~1999年三種藻校正值與實測值之比較圖.........111
圖4- 45 2000 ~ 2003年三種藻體積隨時間之消長圖...........112
圖4- 46 2000 ~2003年三種藻模擬結果 ....................112
圖4- 47 2000 ~2003年三種藻校正值與實測值之比較圖........113
圖4- 48 三種藻比生長速率µ模擬值之比較圖.................116
圖4- 49 三種藻於上層其生長量擬值之比較圖.................116
圖4- 50 三種藻於上下層間混合量模擬值之比較圖 ...........116
dc.language.isozh-TW
dc.subject相關性分析zh_TW
dc.subject環境因子zh_TW
dc.subject藻類zh_TW
dc.subject翡翠水庫zh_TW
dc.subject生物多樣性zh_TW
dc.subject動態模擬zh_TW
dc.subjectbiodiversityen
dc.subjectdynamic modelingen
dc.subjectrelation analysisen
dc.subjectenvironmental factoren
dc.subjectphytoplanktonen
dc.title翡翠水庫藻類多樣性之分析及消長動態之模擬zh_TW
dc.titleAnalyses of Algal Biodiversity and Modeling the Dynamics of Phytoplankton Succession in Feitsui Reservoiren
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊宗,張文亮
dc.subject.keyword藻類,環境因子,相關性分析,翡翠水庫,動態模擬,生物多樣性,zh_TW
dc.subject.keywordphytoplankton,environmental factor,relation analysis,dynamic modeling,biodiversity,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved