請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36396
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖大修(Ta-Hsiu Liao) | |
dc.contributor.author | Jeng-Rong Lee | en |
dc.contributor.author | 李貞蓉 | zh_TW |
dc.date.accessioned | 2021-06-13T07:59:23Z | - |
dc.date.available | 2010-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-22 | |
dc.identifier.citation | 1. Sethuraman, M., McComb, M. E., Heibeck, T., Costello, C. E. & Cohen, R. A. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol. Cell. Proteomics. 3, 273-8. (2004)
2. Righetti, P. G. et al. Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. J. Chromatogr A. 1051, 3-17. (2004). 3. Thomas, J. A., Poland, B. & Honzatko, R. Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch. Biochem. Biophys. 319, 1-9. (1995). 4. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520-6. (2002). 5. Kozarich, J. W. Activity-based proteomics: enzyme chemistry redux. Curr Opin. Chem. Biol. 7, 78-83. (2003). 6. Rohrbach, M. S., Bodley, J. W. & Mann, K. G. Chemical and physical studies on the structure of Escherichia coli elongation factor G. J. Biol. Chem. 250, 6831-6. (1975). 7. Lee, K. H. Proteomics: a technology-driven and technology-limited discovery science. Trends. Biotechnol. 19, 217-22. (2001). 8. Washburn, M. P., Wolters, D. & Yates, J. R., 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242-7. (2001). 9. Suh, S. K. et al. Identification of oxidized mitochondrial proteins in alcohol-exposed human hepatoma cells and mouse liver. Proteomics 4, 3401-12. (2004). 10. Liu, T. et al. High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal. Chem. 76, 5345-53. (2004). 11. Collins, M. O. et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280, 5972-82. (2005) 12. Brittain, S. M., Ficarro, S. B., Brock, A. & Peters, E. C. Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat. Biotechnol. 23, 463-8. (2005) 13. Leichert, L. I. & Jakob, U. Protein thiol modifications visualized in vivo. PLoS. Biol. 2, e333. (2004) 14. Gevaert, K. et al. Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies. Proteomics 4, 897-908. (2004). 15. Liu, T. et al. Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: the human mammary epithelial cell proteome. Proteomics 5, 1263-73. (2005). 16. Yano, H., Kuroda, S. & Buchanan, B. B. Disulfide proteome in the analysis of protein function and structure. Proteomics 2, 1090-6. (2002). 17. Sevrioukova, I. F. Redox-dependent structural reorganization in putidaredoxin, a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida. J. Mol. Biol. 347, 607-21. (2005). 18. Djaman, O., Outten, F. W. & Imlay, J. A. Repair of oxidized iron-sulfur clusters in Escherichia coli. J. Biol. Chem. 279, 44590-9. (2004). 19. Poole, L. B. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch. Biochem. Biophys 433, 240-54. (2005). 20. Rabilloud, T. et al. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277, 19396-401. (2002). 21. Ghezzi, P. et al. Protein glutathionylation: coupling and uncoupling of glutathione to protein thiol groups in lymphocytes under oxidative stress and HIV infection. Mol. Immunol. 38, 773-80. (2002). 22. Fratelli, M. et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. U S A 99, 3505-10. (2002). 23. Lockwood, T. D. Redox pacing of proteome turnover: influences of glutathione and ketonemia. Arch. Biochem. Biophys. 417, 183-93. (2003). 24. Lindahl, M. & Florencio, F. J. Systematic screening of reactive cysteine proteomes. Proteomics 4, 448-50. (2004). 25. Kiley, P. J. & Storz, G. Exploiting thiol modifications. PLoS. Biol. 2, e400. (2004). 26. Agudo, D., Mendoza, M. T., Castanares, C., Nombela, C. & Rotger, R. A proteomic approach to study Salmonella typhi periplasmic proteins altered by a lack of the DsbA thiol: disulfide isomerase. Proteomics 4, 355-63. (2004). 27. Ghezzi, P. & Bonetto, V. Redox proteomics: identification of oxidatively modified proteins. Proteomics 3, 1145-53. (2003). 28. Laragione, T. et al. Redox regulation of surface protein thiols: identification of integrin alpha-4 as a molecular target by using redox proteomics. Proc. Natl. Acad. Sci. U S A 100, 14737-41. (2003). 29. Baty, J. W., Hampton, M. B. & Winterbourn, C. C. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2, 1261-6. (2002). 30. Brocklehurst, K., Carlsson, J., Kierstan, M. P. & Crook, E. M. Covalent chromatography. Preparation of fully active papain from dried papaya latex. Biochem. J. 133, 573-84. (1973). 31. Csoma, C. & Polgar, L. Proteinase from germinating bean cotyledons. Evidence for involvement of a thiol group in catalysis. Biochem. J. 222, 769-76. (1984). 32. Caldas, T. D., El Yaagoubi, A., Kohiyama, M. & Richarme, G. Purification of elongation factors EF-Tu and EF-G from Escherichia coli by covalent chromatography on thiol-sepharose. Protein. Expr. Purif. 14, 65-70. (1998). 33. Egorov, T. A., Svenson, A., Ryden, L. & Carlsson, J. A rapid and specific method for isolation of thiol-containing peptides from large proteins by thiol-disulfide exchange on a solid support. Proc. Natl. Acad. Sci. U S A 72, 3029-33. (1975). 34. Wang, S. & Regnier, F. E. Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J. Chromatogr A. 924, 345-57. (2001). 35. Mansfeld, J., Vriend, G., Van den Burg, B., Eijsink, V. G. & Ulbrich-Hofmann, R. Probing the unfolding region in a thermolysin-like protease by site-specific immobilization. Biochemistry 38, 8240-5. (1999). 36. Mansfeld, J. & Ulbrich-Hofmann, R. Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics. Biotechnol. Appl. Biochem. 32, 189-95. (2000). 37. Yamazaki, D., Motohashi, K., Kasama, T., Hara, Y. & Hisabori, T. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol. 45, 18-27. (2004). 38. Salnikow, J., Liao, T. H., Moore, S. & Stein, W. H. Bovine pancreatic deoxyribonuclease A. Isolation, composition, and amino acid sequences of the tryptic and chymotryptic peptides. J. Biol. Chem. 248, 1480-8. (1973). 39. Suck, D. & Oefner, C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature 321, 620-5. (1986). 40. Chen, W. J., Lee, I. S., Chen, C. Y. & Liao, T. H. Biological functions of the disulfides in bovine pancreatic deoxyribonuclease. Protein. Sci. 13, 875-83. (2004). 41. Phillips, R. S. & Gollnick, P. D. Evidence that cysteine 298 is in the active site of tryptophan indole-lyase. J. Biol. Chem. 264, 10627-32. (1989). 42. Kuhn, D. M. & Arthur, R., Jr. Molecular mechanism of the inactivation of tryptophan hydroxylase by nitric oxide: attack on critical sulfhydryls that spare the enzyme iron center. J. Neurosci. 17, 7245-51. (1997). 43. Anborgh, P. H., Parmeggiani, A. & Jonak, J. Site-directed mutagenesis of elongation factor Tu. The functional and structural role of residue Cys81. Eur J. Biochem. 208, 251-7. (1992). 44. Rutthard, H., Banerjee, A. & Makinen, M. W. Mg2+ is not catalytically required in the intrinsic and kirromycin-stimulated GTPase action of Thermus thermophilus EF-Tu. J. Biol. Chem. 276, 18728-33. (2001). 45. Lunn, C. A. & Pigiet, V. P. Localization of thioredoxin from Escherichia coli in an osmotically sensitive compartment. J. Biol. Chem. 257, 11424-30. (1982). 46. Seaver, L. C. & Imlay, J. A. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 183, 7182-9. (2001). 47. Seaver, L. C. & Imlay, J. A. Alkyl hydroxyperoxide reductase is the primart scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol. 183, 7173-81. (2001). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36396 | - |
dc.description.abstract | 隨著後基因體時期的來臨,為了進一步了解生物系統的運作,所以將研究重點放在蛋白質體學上。為了達到不同的研究目標,發展出許多關於蛋白質體學的實驗方法。本篇論文中使用activated-thiol sepharose 4B 當作共價層析管柱,並以此為工具研究大腸桿菌蛋白質體。首先,我們以牛胰臟去氧核糖核酸水解酶 (bpDNase) 及其突變株 (brDNase C101A) 測試此共價層析法之性質。由於bpDNase 具有兩對雙硫鍵且缺乏單一硫醇基,因此無法接合在膠體上。反之,brDNase C101A 具有一個單獨的硫醇基(Cys104),可以成功地被連接於共價層析膠體上,且用25mM DTT沖提下來後仍具有酵素活性。接著我們以共價層析法分析大腸桿菌 (E.coli ) 的蛋白質體,將沖提下來的蛋白質以二維電泳分離,再用電噴灑串聯式質譜儀(ESI-LC-tandem mass spectrometry) 鑑定蛋白質身分。在二維電泳膠片上共有四十三個蛋白質被鑑定出來,其中包括九個氫化酵素 (hydrogenase)、四個氧化還原相關酵素 (redox-related enzymes)、兩個熱休克性蛋白 (heat-shock proteins) 及四個核糖體組成蛋白 (ribosomal proteins) 等。若E.coli 遭受轉型作用的刺激,我們發現有β-galactosidase, tryptophanase and chloramphenicol acetyl transferase 會大量表現。為了觀察E.coli 在高度氧化環境下的蛋白質體變化,我們在培養液中加入5 mM H2O2,經由共價層析法分析其蛋白質體後,發現alkyl hydroperoxide reductase (AhpC) 有大量表現。根據前述結果,發現此共價層析管柱可能與含金屬離子之蛋白質有較強結合能力,因此我們在E.coli 的蛋白質混合液中加入20mM EDTA 再通入共價層析管柱中,結果發現EF-Tu 有大量增加。根據這些實驗結果,我們提出利用共價層析法,再結合二維電泳及液相層析質譜儀,應可有效且有系統性地分析蛋白質體中含有高度反應性硫醇基的蛋白質。 | zh_TW |
dc.description.abstract | In post-genomic era, the field of proteomics has emerged for the analysis of biological systems. Some proteomic approaches were developed to achieve different research goals. In this paper we used the activated-thiol sepharose 4B as a covalent chromatographic beads to study E.coli proteome. We examined the feasibility of activated-thiol sepharose 4B using native bpDNase and brDNase (C101A). As expected, the bpDNase with two pairs of disulfide bonds and no free sulfhydryl group can not be bind to the activated-thiol sepharose 4B beads, while brDNase (C101A), having one free sulfhydryl group on Cys104, could be linked to the activated-thiol sepharose 4B beads and eluted in its fully active form by 25mM DTT. Then, E.coli lysate was applied to the covalent chromatography and the eluent was further analyzed by two dimensional electrophoresis (2DE) and ESI-LC-tandem mass spectrometry. Forty-three proteins on the 2DE PAGE were identified. Among them, there were 9 hydrogenase enzymes, 4 redox-related enzymes, 2 heat-shock proteins and 4 ribosomal proteins. If the E.coli was challenged with transformation, β-galactosidase, tryptophanase and chloramphenicol acetyl transferase were found to be overexpressed. We also found that when E.coli was under H2O2 treatment, the expression of alkyl hydroperoxide reductase (AhpC) enzyme was increased. Pre-treatment of E.coli lysate with 20mM EDTA resulted in a large increase amount of EF-Tu in the eluents. Covalent chromatography and 2D eletrophoresis/tandem mass spectrometry were employed to analyze the E.coli proteome, and the reactive sulfhydryl-containing proteins could be concentrated. With these approaches, it would be possible to systematically investigate the alteration of redox proteomics under challenges in E.coli. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:59:23Z (GMT). No. of bitstreams: 1 ntu-94-R92442017-1.pdf: 1167541 bytes, checksum: b1727522e3336a897c06930ea652ae89 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 1. 中文摘要……………………………………..2
2. 英文摘要……………………………………..3 3. 實驗材料與儀器……………………………..4 4. 第一章、前言………………...……………...6 5. 第二章、材料與方法……………………….13 6. 第三章、結果……………………………….28 7. 第四章、討論……………………………….35 8. 圖表………………………………………….42 | |
dc.language.iso | zh-TW | |
dc.title | 大腸桿菌中含硫醇基之蛋白質
之蛋白質體學 | zh_TW |
dc.title | Proteomic Analysis of Sulfhydryl-containing Proteins in Escherichia coli | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳威戎(Wei-Jung Chen),莊榮輝(Rong-Huay Juang),張文章(Wen-Chang Chang) | |
dc.subject.keyword | 大腸桿菌,蛋白質體學,硫醇基, | zh_TW |
dc.subject.keyword | E.coli,proteomics,sulfhydryl, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-22 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。