Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36389
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余榮熾
dc.contributor.authorShu-Chen Hsiehen
dc.contributor.author謝淑楨zh_TW
dc.date.accessioned2021-06-13T07:59:09Z-
dc.date.available2006-07-27
dc.date.copyright2005-07-27
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citationAmano, J., Kobayashi, K., and Oshima, M. (2001) Comparative study of
glycosyltransferase activities in Caco-2 cells before and after enterocytic
differentiation using lectin-affinity high-performance liquid chromatography. Arch.
Biochem. Biophys. 395, 191-198
Amano, J., and Oshima, M. (1999) Expression of the H Type 1 Blood Group Antigen
during Enterocytic Differentiation of Caco-2 Cells. Expression of the H type 1 blood
group antigen during enterocytic differentiation of caco-2 cells. J. Biol. Chem. 274,
21209-21216
Amado, K., Almeida, R., Carneiro, F., Leverly, S. B., Holmes, E. H., Nomoto, M.,
Hollingsworth, M. A., Hassan, H., Schwientek, T., Nielsen, T. A., Bennett, E. P., and
Clausen, H. (1998) A family of human β3-Galactosyltransferases. characterization of
four members of a UDP-Galactose:
β-N-acetyl-glucosamine/β-N-acetyl-galactosamine β-1,3-galactosyltransferase family.
J. Biol. Chem. 273, 12770-12778
Andersson, L. C., Nilsson, K., and Gahmberg, C. G. (1979) K562--a human
erythroleukemic cell line. Int. J. Cancer 23, 143-147
Bierhuizen, M. F. A., Maemura, K., Kudo, S., and Fukuda, M. (1995) Genomic
organization of core 2 and I branching β-1,6-N-acetylglucosaminyltransferase gene
family. Glycobiology 5, 417-425
Bierhuizen, M. F., Mattei, M. G., and Fukuda, M. (1993) Expression of the
developmental I antigen by a cloned human cDNA encoding a member of a
β-1,6-N-acetylglucosaminyltransferase gene family. Gene Dev. 7, 468-478
Brockhausen, I., Romero, P. A., and Herscovics, A. (1991) Glycosyltransferase
changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer
Res. 51, 136–3142
Cameron, H. S., Szczepaniak, D., and Weston, B. W. (1995) Expression of human
chromosome 19p α(1,3)- fucosyltransferase genes in normal tissues-alternative
splicing, polyadenylation, and isoforms. J. Biol. Chem. 270, 20112-20122
Cameron, H. S., Szczepaniak, D., and Weston, B. W. (1995) Physical maps of human
alpha(1,3) fucosyltransferase genes FUT3-FUT6 on chromosomes 19p13.3 and 11q21.
J. Biol. Chem. 270, 20112-20221
Childs, R. A., Kapadia, A., and Feizi, T. (1980) Expression of blood group I and i
active carbohydrate sequences on cultured human and animal cell lines assessed by
radioimmunoassay with monoclonal cold agglutining. Eur. J. Immunol., 10, 379-384
Clarke, J. L., and Watkins, W. M. (1996) α1,3-L-Fucosyltransferase expression in
developing human myeloid cells. J. Biol. Chem. 271, 10317-10328
Costache, M., Apoil, P. A., Cailleau, A., Elmgren, A., Larson, G., Henry, S., Blancher,
A., Iordachescu, D., Oriol, R., and Mollicone, R. (1997a) Evolution of
fucosyltransferase genes in vertebrates. J. Biol. Chem. 272, 29721-29728
Daniels, G. Human Blood Groups, second ed. Blackwell Science, Oxford, England,
2002
Feizi, T. (1985) Demonstration by monoclonal antibodies that carbohydrate structures
of glycoproteins and glycolipids are onco-developmental antigens. Nature 314, 53-57
Hakomori, S. (1996) Tumor malignancy defined by aberrant glycosylation and
sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309-5318
Hakomori, S. I. (1990) Bifunctional role of glycosphingolipids. Modulators for
transmembrane signaling and mediators for cellular interactions. J. Biol. Chem. 265,
18713-18716
Hakomori, S. I., Handa, K., Iwabuchi, K., Yamamura, S., and Prinetti, A. (1998) New
insights in glycosphingolipid function: 'glycosignaling domain,' a cell surface
assembly of glycosphingolipids with signal transducer molecules, involved in cell
adhesion coupled with signaling. Glycobiology 8, xi-xix
Hennet, T., Dinter, A., Kuhnert, P., Mattu, T. S., Rudd, M. P., and Berger, E. G. (1998)
Genomic cloning and expression of three murine UDP-galactose:
β-N-acetylglucosamine β1,3-Galactosyltransferase Genes. J. Biol. Chem. 273, 58-65
Isshiki, S., Kudo, T., Nishihara, S., Ikehara, Y., Togayachi A., Furuya, A., Shitara, K.,
Kubota, T., Watanabe, M., Kitajima, M., and Narimatsu, H. (2003) Lewis type 1
antigen synthase (β3Gal-T5) is transcriptionally regulated by homeoproteins. J. Biol.
Chem. 278, 36611-36620
Isshiki, S., Togayachi A., Kudo, T., Nishihara, S., Watanabe, M., Kubota, T., Kitajima,
M., Shiraishi, N., Sasaki, K., Andoh, T., and Narimatsu, H. (1999) Cloning,
expression, and characterization of a novel UDP-galactose: β-N-acetylglucosamine β
1,3-galactosyltransferase(β3Gal-T5) responsible for synthesis of type 1 chain in
colorectal and pancreatic epithelia and tumor cells derived therefrom. J. Biol. Chem.
274, 12499-12507
Izawa, M., Kumamoto, K., Mitsuoka, C., Kanamori, A., Ohmori, K., Ishida, H.,
Nakamura, S., Kurata-Miura, K., Sasaki, K., Nishi, T., and Kannagi, R. (2000)
Expression of sialyl 6-sulfo Lewis X is inversely correlated with conventional sialyl
Lewisx expression in human colorectal cancer. Cancer Res. 60, 1410-1416
Kaneko, M., Kudo, T., Iwasaki, H., Ikehara, Y., Nishihara, S., Nakagawa, S., Sasaki,
K., Shiina, T., Inoko, H., Saitou, N., and Narimatsu, H. (1999) α1,3-
fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse:
molecular cloning , characterization and tissue distribution of human Fuc-TIX. FEBS
Lett 452, 237-242
Kannagi, R. (1997) Carbohydrate-mediated cell adhesion involved in hematogenous
metastasis of cancer. Glycoconjugate J. 14, 577-584
Kapadia, A., Feizi, T., and Evans, M. J. (1981) Changes in the expression and
polarization of blood group I and i antigens in post-implantation embryos and
teratocarcinomas of mouse associated with cell differentiation. Exp. Cell Res. 131,
185-195
Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G., and Lowe, J. B. (1995) Sequence
and expression of a candidate for the human secretor blood group
α(1,2)fucosyltransferase gene (FUT2). J. Biol. Chem. 270, 4640-4649
Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S.,
Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N.,
Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., and Kozutsumi, Y. (2004)
Hypoxia induces adhesion molecules on cancer cells: A missing link between
Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci.
USA 101, 8132-8137
Kolbinger, F., Streiff, M. B., and Katopodis, A. G. (1998) Cloning of a human
UDP-galactose: 2-Acetamido-2-deoxy-D-glucose 3 β-Galactosyltransferase
catalyzing the formation of Type 1 chains J. Biol. Chem. 273, 433-440
Koszdin, K. L., and Bowen, B. R. (1992) The cloning and expression of a human
α-1,3- fucosyltransferase capable of forming the E-selectin ligand. Biochem. Biophys.
Res. Commun. 187, 152-157
Kukowska Latallo, J. F., Larsen, R. D., Nair, R. P., and Lowe, J. B. (1990) A cloned
human cDNA determines expression of a mouse stage-specific embryonic antigen and
the Lewis blood group α(1,3/1,4) fucosyltransferase. Genes Dev. 4, 1288-1303
Larsen, R. D., Ernst, L. K., Nair, R. P., and Lowe, J. B. (1990) Molecular cloning,
sequence and expression of a human GDP-L-fucose: β-D-galactoside
α2-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc. Natl.
Acad. Sci. USA 87, 6674-6678
Le Pendu, J., Cartron, J. P., Lemieux, R. U., and Oriol, R. (1985) The presence of at
least two different H-blood group related β-D-Gal α-2-L-fucosyltransferase in human
serum and the genetics of blood group H substances. Am. J. Hum. Genet. 37, 749-760
Lozzio, C. B., and Lozzio, B. B. (1975) Human chronic myelogenous leukemia
cell-line with positive Philadelphia chromosome. Blood 45, 321-334
Lozzio, C. B., Lozzio, F. F., Felice, A. S., Bamberger, E. G. (1981) Human myeloid
cell lines. Blood 57, 979-980
Magnani, J. L., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H.,
and Ginsburg, V. (1982) A monoclonal antibody-defined antigen associated with
gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II.
J. Biol. Chem. 257, 14365-14369
Magnani, J. L., Steplewski, Z., Koprowski, H., and Ginsburg, V. (1983) Identification
of the gastrointestinal and pancreatic cancer-associated antigen detected by
monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res. 43,
5489-5492
Maly, P., Thall, A. D., Petryniak, B., Rogers, C. E., Smith, P. L., Marks, R. M., Kelly,
R. J., Gersten, K. M., Cheng, G., Saunders, T. L., Camper, S. A., Camphausen, R. T.,
Sullivan, F. X., Isogai, Y., Hindsgall, O., von Andrian, U. H., and Lowe, J. B. (1996)
The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an
essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643-653
Marer, N. L., Palcic, M. M., Clarke, J. L., Davies, D., and Skacel, P. O. (1997)
Developmental regulation of α1,3-fucosyltransferase expression in CD34 positive
progenitors and maturing myeloid cells isolated from normal bone marrow.
Glycobiology 7, 357-365
Mariadason, J. M., Rickard, K. L., Barkla, D. H., Augenlicht, L. H., and Gibson, P. R.
(2000) Divergent phenotypic patterns and commitment to apoptosis of Caco-2 cells
during spontaneous and butyrate-induced differentiation. J. Cell. Physiol. 183,
347-354
Marie, J. P., Izaguirre, C. A., Civin, C. I., Mirro, J., McCulloch, E. A. (1981) The
presence within single K-562 cells of erythropoietic and granulopoietic differentiation
markers. Blood 58, 708-711
Marsh, W. L. (1961) Anti-i: a cold antibody defining the Ii relationship in human red
cells. Br. J. Haematol. 7, 200-209
Marsh, W. L., Nichols, M. E., and Allen, F. H. (1970) Inhibition of anti-I sera by
human milk. Vox Sang. 18, 149-154
Marsh, W. L., Nichols, M. E., and Reid, M. E. (1971) The definition of two I antigen
components. Vox Sang. 20, 209-217
Nakayama, T., Watanabe, M., Katsumata, T., Teramoto, T., Kitajima, M. (1995)
Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced
colorectal carcinoma. Cancer 75, 2051-2056
Narimatsu, H., Iwasaki, H., Nakayama, F., Ikehara, Y., Kudo, T., Nishihara, S.,
Sugano, K., Okura, H., Fujita, S., Hirohashi, S. (1998) Lewis and secretor genedosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and
colorectal cancer patients. Cancer Res. 58, 512-518
Natsuka, S., Gersten, K. M., Zenita, K., Kannagi, R., and Lowe, J. B. (1994)
Molecular cloning of a cDNA encoding a novel human leukocyte
alpha-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis X determinant. J.
Biol. Chem. 269, 16789-16794
Nishihara, S., Hiraga, T., Ikehara, Y., Iwasaki, H., Kudo, T., Yazawa, S., Morozumi,
K., Suda, Y., and Narimatsu, H. (1999a) Molecular behavior of mutant Lewis enzyme.
Glycobiology 9, 373-382
Nishihara, S., Iwasaki, H., Kaneko, M., Twada, A., Ito, M., and Narimatsu, H. (1999b)
α1,3- fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal
GlcNAc residue of polylactosamine chain while the other four α1,3FUT members
preferentially fucosylate the inner GlcNAc residue. FEBS Lett 462, 289-294
Nishihara, S., Nakazato, M., Kudo, T., Kimura, H., Ando, T., and Narimatsu, H. (1993)
Human alpha-1,3 fucosyltransferase (Fuc-TVI) gene is located at only 13 kb 3’ to the
Lewis type fucosyltransferase (Fuc-TIII) gene on chromosome 19. Biochem. Biophys.
Res. Commun. 190, 42-46
Pinto, M., Robine-Leon, S., Appay, M.-D., Kedinger, M., Triadou, N., Dussaulx, E.,
Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., and Zweibaum, A. (1983)
Enterocyte-like differentiation and polarization of the human colon carcinoma cell
line Caco-2. Biol. Cell 47, 323–330
Rajan, V. P., Larsen, R. D., Ajmera, S., Ernst, L. K., and Lowe, J. B. (1989) A cloned
human DNA restriction fragment determines expression of a GDP-L-fucose:
β-D-galactoside 2-α-L-fucosyltransferase in transfected cells. Evidence for isolation
and transfer of the human H blood group locus. J. Biol. Chem. 264, 11158-11167
Reguigne-Arnould, I., Couillin, P., Mollicone, R., Faure, S., Fletcher, A., Kelly, R. J.,
Lowe, J. B., and Oriol, R. (1995) Relative positions of two clusters of human α-
L-fucosyltransferase in 19q(FUT1-FUT2) and 19p(FUT6-FUT3-FUT5) within the
microsatellite genetic map of chromosome 19. Cytogenet. Cell Gen. 71, 158-162
Reid, M. E., and Lomas-Francis, C. The Blood Group Antigen Facts Book, Academic
Press, San Diego, CA, 1997
Rimmer, E. F., and Horten, M. A. (1984) Expression of myeloid-specific antigens on
two human erythroleukaemia cell lines, HEL and K562. Leuk Res. 8, 207-211
Rouger, P., Juszczak, G., Doinel, C., and Salmon, C. (1980) Relationship between I
and H antigens, I. A study of the plasma and saliva of a normal population.
Transfusion 20, 536-539
Rouquier, S., Lowe, J. B., Kelly, R. J., Fertitta, A. L., Lennon, G. G., and Giorgi, D.
(1995) Molecular cloning of a human genomic region containing the H blood group
α(1,2) fucosyltransferase gene and two H locus-related DNA restriction fragments. J.
Biol. Chem. 270, 4632-4639
Rutherford, T. R., Clegg, J. B., and Weatherall, D. J. (1979) K562 human leukaemic
cells synthesize embryonic haemoglobin in response to haemin. Nature (London) 280,
164-165
Salvini, R., Bardoni, A., Valli, M., and Trinchera, M. (2001)
β1,3-galactosyltransferase β3Gal-T5 acts on the GlcNAcβ1→3Galβ1→4GlcNAcβ1→
R sugar chains of carcinoembryonic antigen and other N-Linked glycoproteins and is
down-regulated in colon adenocarcinomas. J. Biol. Chem. 276, 3564-3573
Sasaki, K., Kurata, K., Funayama, K., Nagata, M., Watanabe, E., Ohta, S., Hanai, N.,
and Nishi, T. (1994) Expression cloning of a novel alpha 1,3-fucosyltransferase that is
involved in biosynthesis of the sialyl Lewis X carbohydrate determinants in
leukocytes. J. Biol. Chem. 269, 14730-14737
Sasaki, K., Sasaki, E., Kawashima, K., Hanai, N., Nishit., and Hasegawa, M. (1994)
Japanese Patent 0618759 A 940705
Schwientek, T., Nomoto, M., Levery, S. B., Merkx, G., van Kessel, A. G., Bennett, E.
P., Hollongsworth, M. A., and Clausen, H. (1999) Control of O-glycan branch
formation. Molecular cloning of human cDNA encoding a novel
β-1,6-N-acetylglucosaminyltransferase forming core 2 and core 4. J. Biol. Chem. 274,
4504-4512
Siavoshian, S., Blottiere, H. M., Le Foll, E., Kaeffer, B., Cherbut, C., and Galmiche, J.
P. (1997) Comparison of the effect of different short chain fatty acid on the growth
and differentiation of human colonic carcinoma cell lines in vitro Cell Biol. Int. 21,
281–287
Singh, H., Sem, R., Baltimore, D., and Sharp, P. A. (1986) A nuclear factor that binds
to a conserved sequence motif in transcriptional control elements of immunoglobulin
genes. Naure 319, 154-158
Staudt, L. H., Singh, H., Sen, R., Wirth, T., Sharp, P. A., and Baltimore, D. (1986) A
lymphoid-specific protein binding to the octamer motif of immunoglobulin genes.
Nature 323, 640-643
Sutherland, J. A., Turner, A. R., Mannoni, P., McGann, L. E., and Ture, J-M. (1986)
Differentiation of K562 leukemia cells along erythroid, macrophage, and
megakaryocyte lineages. J. Biol. Res. Modif. 5, 250-262
Tabilio, A., Pelicci, P. G., Vinci, G., Mannoni, P., Civin, C. I., Vainchenker, W., Testa,
U., Lipinski, M., Rochant, H., Breton-Gorius, J. (1983) Myeloid and megakaryocytic
properties of K-562 cell lines. Cancer Res. 43, 4569-4574
Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., and
Kannagi, R. (1993) Contribution of carbohydrate antigens sialyl Lewis A and sialyl
Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res. 53,
354-361
Taniguchi, N., and Honke, K., and Fukuda, M. (2002) Handbook of
glycosyltransferases and related genes. Springer-Verlag Tokyo
Tenen, D. G., Hromas, R., Licht, J. D., and Zhang, D. E. (1997) Transcription factors,
normal myeloid development, and leukemia. Blood 90, 489-519
Testa, U., Henri, A., Bettaieb, A., Titeux, M., Vainchenker, W., Tonthat, H., Docklear,
M. C., and Rochant, H. (1982) Regulation of i- and I-antigen expression in the K562
cell line. Cancer Res. 42, 4694-4700
Tetteroo, P. A. T., Massaro, F., Mulder, A., Schreuder-Van Gelder R., Von Dem Borne,
A. E. G.. (1984) Megakaryoblastic differentiation of proerythroblastic K562 cell-line
cells. Leuk Res. 8, 197-206
Van Klinken, B. J. W., Oussoren, E., Weenink, J. J., Strous, G. J., Buller, H. A, ekker,
J., and Einerhand, A. W. C. (1996) The human intestinal cell lines Caco-2 and
LS174T as models to study cell-type specific mucin expression. Glycoconj. J. 13,
757–768
Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct.
Glycobiology 3, 97-130
Weston, B. W., Smith, P. L., Kelly, R. J., and Lowe, J. B. (1992) Molecular cloning of
a fourth member of a human α(1,3) fucosyltransferase gene family. Multiple
homologous sequences that determine expression of the Lewis X, sialyl Lewis X, and
difucosyl sialyl Lewis X epitopes. J. Biol. Chem. 267, 24575-24584
Yazawa, S., Nishihara, S., Iwasaki, H., Asao, T., Nagamachi, Y., Matta, K. L., and
Narimatsu, H. (1995) Genetic and enzymatic evidence for Lewis enzyme expression
in Lewis-negative cancer patients. Cancer Res. 55, 1473-1478
Yeh, J. C., Ong, E., and Fukuda, M. (1999) Molecular cloning and expression of a
novel β-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches.
J. Biol. Chem. 254, 3221-3228
Yu, L. C., Twu, Y. C., Chou, M. L., Reid, M. E., Gray, A. R., Moulds, J. M. Chang, C.
Y., and Lin, M. (2003) The molecular genetics of the human I locus and molecular
background explain the partial association of the adult i phenotype with congenital
cataracts. Blood 101, 2081-2088
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36389-
dc.description.abstract癌化發生的過程常會伴隨著細胞表面的醣質結構發生改變,這類的醣結構稱
為tumor-associated antigens;其中最著名的例子為sialyl Lewis a(sLea)及sialyl
Lewis x ( sLex ) 在大腸直腸癌中的角色。Lewis 抗原建構於重複的
N-acetyllactosamine(Gal-GlcNAc,LacNAc)單元所形成的poly-LacNAc 結構之
上。這些poly-LacNAc 結構可分為type 1 及type 2 chain,及直鏈型的i 或具支鏈
的I 抗原結構。已知i 及I 抗原的表現會隨發育以及癌症發生過程而變化。然而,
造成sLea 及sLex 在大腸直腸癌細胞中增加的分子機制,以及I 結構在其中扮演
的角色截至目前為止仍不十分明確。本研究主要分為兩大部分,第一部份為建立
腸壁細胞Caco-2 的分化模型;並檢視與Lewis 及I 醣抗原相關基因的表現,以
期能了解Lewis 抗原在癌細胞中表現增加的分子機制及I 醣基因可能的角色。第
二部分為利用此Caco-2 細胞以及K562 erythroleukemia 細胞的分化模型,來研究
I 醣抗原基因表現的調控機制。
在建立的Caco-2 細胞分化模型中,我們檢視參與type 1 chain 合成的
β3GalT5,參與H 抗原合成的FUT1、FUT2,參與Lewis 抗原的FUT3、FUT6、
FUT7 以及I 基因,在細胞分化前後的表現。我們發現在Caco-2 分化後,H type 1
抗原的增加是由於更上游的β3GalT5 基因表現增加所導致。此外,Caco-2 細胞分
化後,造成FUT3 及FUT6 的大量表現,然而我們卻並未觀察到相對應的Lewis
抗原表現量的變化,其中的原因値得進一步的研究。
由於參與I 基因轉錄的IGnTC 在Caco-2 細胞分化後有十分顯著的負調控,
於是建立了IGnTC 正向調控的K562 細胞分化模型,以利研究IGnTC 的調控。
研究結果發現,IGnTC 在兩種細胞模型中的表現,是藉由不同的DNA 區塊來調
控。在Caco-2 細胞中IGnTC 的可能調控區為5’ -2572~-1066 的區域,而K562
細胞,則可能落於5’ -318~-251 約67 bp 的區域內。此段DNA 序列包含Oct-2.1、
Sp1 和C/EBPα轉錄因子的可能結合序列。
zh_TW
dc.description.abstractChanges of structure and expression profile of cell surface carbohydrates are often
observed in the tumorigenesis. For example, sialyl Lewis a (sLea) and sialyl Lewis x
(sLex) epitopes, well known cancer-associated antigens, increased in colorectal
cancerous tissues. Lewis antigens have been known building on a poly-LacNAc
(Galβ1-3/4GlcNAcβ-, LacNAc) backbone structure, which can be divided into type 1
(Galβ1-3GlcNAcβ-) and type 2 (Galβ1-4GlcNAcβ-) chains. Linear poly-LacNAc
structure called i antigen, whereas the branched one called I antigen. The expression
pattern of Ii antigens is developmentally regulated and altered during oncogenesis.
The molecular mechanism, which leads to cancer-associated expression of sialyl
Lewis x/a and the roles of the branched I-antigen structure and I gene in the formation
of multimeric Lewis antigen structure have not been well understood. The main study
divided into two parts, the first one is establishment of enterocytic differentiation
model in Caco-2 cell, and profiling the expression of Lewis- and I-related genes. The
second is regarding the regulatory mechanism of I gene in Caco-2 and K562
differentiation models.
We have profiled the expression of β3GalT5, FUT1, FUT2, FUT3, FUT6, FUT7,
and I genes before and after the differentiation of Caco-2 cells. We observed that the
increment of H type 1 antigens after Caco-2 cell differentiated is due to the enhanced
expression of upstream β3GalT5 gene. FUT3 and FUT6 genes are highly expressed at
transcriptional level after Caco-2 cell differentiated, but the amount of Lewis antigens
is not increased. Further investigation is worth doing.
As significant down-regulation of IGnTC gene in differentiated Caco-2 cell, we
established another K562 cell differentiation model, which IGnTC was up-regulated,
to study the regulation mechanism of IGnTC gene. However, the regulatory elements
of IGnTC gene in these two cell models are quite different. The possible regulatory
element appears to locate on 5’ -2572~-1066 region in Caco-2 cells, whereas in K562
cells the regulatory element of IGnTC gene appears to locate on 5’ -318~-251 region.
The sequence of the -318~-251 region contains the potential binding sites for
transcription factors Oct-2.1, Sp1 and C/EBPα.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:59:09Z (GMT). No. of bitstreams: 1
ntu-94-R92b46014-1.pdf: 749674 bytes, checksum: 67c49129701ab3af6ac3d8243771ca22 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄
縮寫表…………………………………………………………………………….….1
摘要…………………………………………………………………………….…..…3
英文摘要(Abstract)………………………………………………………..….4
緒論
一、Lewis 及I 醣抗原與癌化及細胞分化之關係………………………………..5
二、H type 1、H type 2、Lewis 及I 醣抗原之合成路徑以及參與的相關基因…6
1. β3GalT5……………………………………………………………………..7
2. FUT1(H)及FUT2(Se)………………………………………………..8
3. FUT3(Lewis)……………………………………………………………..8
4. FUT6………………………………………………………….………….…9
5. FUT7………………………………………………………………………10
6. IGnT……………………………………………………………………….10
三、Caco-2 及K562 細胞分化模型……………………………………………..11
四、研究構想與目的……………………………………………………………..12
實驗材料與方法
實驗材料…………………………………………………………………………..13
實驗方法………………………………………………………………………......15
一、細胞培養………………………………………………………………….…..15
二、流式細胞儀之分析(Flow Cytometry)………………………………………16
三、半定量反轉錄PCR 分析(Semi-quantitative Reverse Transcription-PCR
Analysis)……………………………………………………………….…17
四、5’- and 3’-Rapid Amplification of cDNA End(5’- & 3’-RACE)…………17
五、報導質體之構築(Construction of Reporter Plasmids)……………………19
六、Luciferase-Reporter Assay……………………………………………………19
結果
一、Caco-2 細胞分化模型的建立…………………………………………….….20
二、合成H type 1、H type 2、Lewis 以及I 醣抗原的相關基因,在Caco-2 細胞
分化模型的表現情形……………………………………………………..20
1. 合成H type 1 及H type 2 的相關基因…………………………………..21
2. 合成Lewis 抗原的相關基因……………………………………………..22
3. 合成I 醣抗原的IGnT 基因……………………………………………….24
三、IGnTC 基因調控之研究……………………………………………………..25
1. 建立K562 細胞分化模型………………………………………………...25
2. IGnT 基因在Caco-2 細胞的5’轉錄起始位置及3’未轉譯區域…………25
3. IGnTC 基因在Caco-2 細胞與K562 細胞中轉錄活性變化的比較……..26
4. IGnTC 基因在Caco-2 細胞之可能調控區域…………………………….27
5. IGnTC 基因在K562 細胞之可能調控區域………………………………28
討論………………………………………………………………………………….30
參考文獻…………………………………………………………………………...50
表一半定量RT-PCR 所使用的primers 序列……………………………………35
圖一H type 1 和H type 2 抗原在Caco-2 細胞分化前後之表現情形…………..36
圖二合成H type 1 和H type 2 的相關基因,其transcripts 在Caco-2
細胞分化前後的表現情形………………………………………..……..37
圖三合成Lewis 抗原的相關基因,其transcripts 在Caco-2 細胞分化
前後的表現情形………………………..………………………………..38
圖四Lewis 抗原在Caco-2 細胞分化前後的表現情形……………………….…39
圖五IGnT transcripts 以及I 抗原在Caco-2 細胞分化前後的表現情形……..…40
圖六IGnTC transcripts 以及I 抗原在K562 細胞分化前後的表現情形……..…42
圖七IGnT 基因的5’轉錄起始位置與3’未轉譯區域…………………………..43
圖八用於Luciferase-reporter assay 的各種constructs…………………………..44
圖九IGnTC基因在Caco-2 細胞與K562細胞中轉錄活性變化的比較………..45
圖十IGnTC 基因5’區的不同長度片段,在未分化Caco-2 細胞中之
轉錄活性……..…………………………………………………………..46
圖十一IGnTC 基因5’區的不同長度片段,在K562 細胞之轉錄活性…………..48
圖十二IGnTC 5’ -537~-252 的區域,可能包含的轉錄調控區……………………49
附圖一H type 1、H type 2、Lewis 及I 醣抗原的結構及合成路徑..………………59
附圖二從i 抗原(直鏈型的poly-LacNAc 結構)形成I 抗原(支鏈型的poly-LacNAc
結構)的詳細步驟………………………………………………………..60
附圖三人類I locus 示意圖以及表現的三種IGnT 基因結構……………………..61
附圖四pGL3-basic 報導載體……………………………………………………….62
dc.language.isozh-TW
dc.title以細胞分化模型研究Lewis及I醣抗原相關基因
的表現與調控
zh_TW
dc.titleStudies of the Expression Profiles and Regulatory Mechanisms of the Lewis- and I-Antigen Related Genes
in Cell Differentiation Models
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱善德,曾婉芳
dc.subject.keyword醣抗原,細胞分化模型,zh_TW
dc.subject.keywordLewis antigen,I antigen,Caco-2,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
732.1 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved