請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36389
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 余榮熾 | |
dc.contributor.author | Shu-Chen Hsieh | en |
dc.contributor.author | 謝淑楨 | zh_TW |
dc.date.accessioned | 2021-06-13T07:59:09Z | - |
dc.date.available | 2006-07-27 | |
dc.date.copyright | 2005-07-27 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-22 | |
dc.identifier.citation | Amano, J., Kobayashi, K., and Oshima, M. (2001) Comparative study of
glycosyltransferase activities in Caco-2 cells before and after enterocytic differentiation using lectin-affinity high-performance liquid chromatography. Arch. Biochem. Biophys. 395, 191-198 Amano, J., and Oshima, M. (1999) Expression of the H Type 1 Blood Group Antigen during Enterocytic Differentiation of Caco-2 Cells. Expression of the H type 1 blood group antigen during enterocytic differentiation of caco-2 cells. J. Biol. Chem. 274, 21209-21216 Amado, K., Almeida, R., Carneiro, F., Leverly, S. B., Holmes, E. H., Nomoto, M., Hollingsworth, M. A., Hassan, H., Schwientek, T., Nielsen, T. A., Bennett, E. P., and Clausen, H. (1998) A family of human β3-Galactosyltransferases. characterization of four members of a UDP-Galactose: β-N-acetyl-glucosamine/β-N-acetyl-galactosamine β-1,3-galactosyltransferase family. J. Biol. Chem. 273, 12770-12778 Andersson, L. C., Nilsson, K., and Gahmberg, C. G. (1979) K562--a human erythroleukemic cell line. Int. J. Cancer 23, 143-147 Bierhuizen, M. F. A., Maemura, K., Kudo, S., and Fukuda, M. (1995) Genomic organization of core 2 and I branching β-1,6-N-acetylglucosaminyltransferase gene family. Glycobiology 5, 417-425 Bierhuizen, M. F., Mattei, M. G., and Fukuda, M. (1993) Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β-1,6-N-acetylglucosaminyltransferase gene family. Gene Dev. 7, 468-478 Brockhausen, I., Romero, P. A., and Herscovics, A. (1991) Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res. 51, 136–3142 Cameron, H. S., Szczepaniak, D., and Weston, B. W. (1995) Expression of human chromosome 19p α(1,3)- fucosyltransferase genes in normal tissues-alternative splicing, polyadenylation, and isoforms. J. Biol. Chem. 270, 20112-20122 Cameron, H. S., Szczepaniak, D., and Weston, B. W. (1995) Physical maps of human alpha(1,3) fucosyltransferase genes FUT3-FUT6 on chromosomes 19p13.3 and 11q21. J. Biol. Chem. 270, 20112-20221 Childs, R. A., Kapadia, A., and Feizi, T. (1980) Expression of blood group I and i active carbohydrate sequences on cultured human and animal cell lines assessed by radioimmunoassay with monoclonal cold agglutining. Eur. J. Immunol., 10, 379-384 Clarke, J. L., and Watkins, W. M. (1996) α1,3-L-Fucosyltransferase expression in developing human myeloid cells. J. Biol. Chem. 271, 10317-10328 Costache, M., Apoil, P. A., Cailleau, A., Elmgren, A., Larson, G., Henry, S., Blancher, A., Iordachescu, D., Oriol, R., and Mollicone, R. (1997a) Evolution of fucosyltransferase genes in vertebrates. J. Biol. Chem. 272, 29721-29728 Daniels, G. Human Blood Groups, second ed. Blackwell Science, Oxford, England, 2002 Feizi, T. (1985) Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314, 53-57 Hakomori, S. (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309-5318 Hakomori, S. I. (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J. Biol. Chem. 265, 18713-18716 Hakomori, S. I., Handa, K., Iwabuchi, K., Yamamura, S., and Prinetti, A. (1998) New insights in glycosphingolipid function: 'glycosignaling domain,' a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8, xi-xix Hennet, T., Dinter, A., Kuhnert, P., Mattu, T. S., Rudd, M. P., and Berger, E. G. (1998) Genomic cloning and expression of three murine UDP-galactose: β-N-acetylglucosamine β1,3-Galactosyltransferase Genes. J. Biol. Chem. 273, 58-65 Isshiki, S., Kudo, T., Nishihara, S., Ikehara, Y., Togayachi A., Furuya, A., Shitara, K., Kubota, T., Watanabe, M., Kitajima, M., and Narimatsu, H. (2003) Lewis type 1 antigen synthase (β3Gal-T5) is transcriptionally regulated by homeoproteins. J. Biol. Chem. 278, 36611-36620 Isshiki, S., Togayachi A., Kudo, T., Nishihara, S., Watanabe, M., Kubota, T., Kitajima, M., Shiraishi, N., Sasaki, K., Andoh, T., and Narimatsu, H. (1999) Cloning, expression, and characterization of a novel UDP-galactose: β-N-acetylglucosamine β 1,3-galactosyltransferase(β3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom. J. Biol. Chem. 274, 12499-12507 Izawa, M., Kumamoto, K., Mitsuoka, C., Kanamori, A., Ohmori, K., Ishida, H., Nakamura, S., Kurata-Miura, K., Sasaki, K., Nishi, T., and Kannagi, R. (2000) Expression of sialyl 6-sulfo Lewis X is inversely correlated with conventional sialyl Lewisx expression in human colorectal cancer. Cancer Res. 60, 1410-1416 Kaneko, M., Kudo, T., Iwasaki, H., Ikehara, Y., Nishihara, S., Nakagawa, S., Sasaki, K., Shiina, T., Inoko, H., Saitou, N., and Narimatsu, H. (1999) α1,3- fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse: molecular cloning , characterization and tissue distribution of human Fuc-TIX. FEBS Lett 452, 237-242 Kannagi, R. (1997) Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconjugate J. 14, 577-584 Kapadia, A., Feizi, T., and Evans, M. J. (1981) Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas of mouse associated with cell differentiation. Exp. Cell Res. 131, 185-195 Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G., and Lowe, J. B. (1995) Sequence and expression of a candidate for the human secretor blood group α(1,2)fucosyltransferase gene (FUT2). J. Biol. Chem. 270, 4640-4649 Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N., Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., and Kozutsumi, Y. (2004) Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA 101, 8132-8137 Kolbinger, F., Streiff, M. B., and Katopodis, A. G. (1998) Cloning of a human UDP-galactose: 2-Acetamido-2-deoxy-D-glucose 3 β-Galactosyltransferase catalyzing the formation of Type 1 chains J. Biol. Chem. 273, 433-440 Koszdin, K. L., and Bowen, B. R. (1992) The cloning and expression of a human α-1,3- fucosyltransferase capable of forming the E-selectin ligand. Biochem. Biophys. Res. Commun. 187, 152-157 Kukowska Latallo, J. F., Larsen, R. D., Nair, R. P., and Lowe, J. B. (1990) A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4) fucosyltransferase. Genes Dev. 4, 1288-1303 Larsen, R. D., Ernst, L. K., Nair, R. P., and Lowe, J. B. (1990) Molecular cloning, sequence and expression of a human GDP-L-fucose: β-D-galactoside α2-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc. Natl. Acad. Sci. USA 87, 6674-6678 Le Pendu, J., Cartron, J. P., Lemieux, R. U., and Oriol, R. (1985) The presence of at least two different H-blood group related β-D-Gal α-2-L-fucosyltransferase in human serum and the genetics of blood group H substances. Am. J. Hum. Genet. 37, 749-760 Lozzio, C. B., and Lozzio, B. B. (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45, 321-334 Lozzio, C. B., Lozzio, F. F., Felice, A. S., Bamberger, E. G. (1981) Human myeloid cell lines. Blood 57, 979-980 Magnani, J. L., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H., and Ginsburg, V. (1982) A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J. Biol. Chem. 257, 14365-14369 Magnani, J. L., Steplewski, Z., Koprowski, H., and Ginsburg, V. (1983) Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res. 43, 5489-5492 Maly, P., Thall, A. D., Petryniak, B., Rogers, C. E., Smith, P. L., Marks, R. M., Kelly, R. J., Gersten, K. M., Cheng, G., Saunders, T. L., Camper, S. A., Camphausen, R. T., Sullivan, F. X., Isogai, Y., Hindsgall, O., von Andrian, U. H., and Lowe, J. B. (1996) The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643-653 Marer, N. L., Palcic, M. M., Clarke, J. L., Davies, D., and Skacel, P. O. (1997) Developmental regulation of α1,3-fucosyltransferase expression in CD34 positive progenitors and maturing myeloid cells isolated from normal bone marrow. Glycobiology 7, 357-365 Mariadason, J. M., Rickard, K. L., Barkla, D. H., Augenlicht, L. H., and Gibson, P. R. (2000) Divergent phenotypic patterns and commitment to apoptosis of Caco-2 cells during spontaneous and butyrate-induced differentiation. J. Cell. Physiol. 183, 347-354 Marie, J. P., Izaguirre, C. A., Civin, C. I., Mirro, J., McCulloch, E. A. (1981) The presence within single K-562 cells of erythropoietic and granulopoietic differentiation markers. Blood 58, 708-711 Marsh, W. L. (1961) Anti-i: a cold antibody defining the Ii relationship in human red cells. Br. J. Haematol. 7, 200-209 Marsh, W. L., Nichols, M. E., and Allen, F. H. (1970) Inhibition of anti-I sera by human milk. Vox Sang. 18, 149-154 Marsh, W. L., Nichols, M. E., and Reid, M. E. (1971) The definition of two I antigen components. Vox Sang. 20, 209-217 Nakayama, T., Watanabe, M., Katsumata, T., Teramoto, T., Kitajima, M. (1995) Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer 75, 2051-2056 Narimatsu, H., Iwasaki, H., Nakayama, F., Ikehara, Y., Kudo, T., Nishihara, S., Sugano, K., Okura, H., Fujita, S., Hirohashi, S. (1998) Lewis and secretor genedosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res. 58, 512-518 Natsuka, S., Gersten, K. M., Zenita, K., Kannagi, R., and Lowe, J. B. (1994) Molecular cloning of a cDNA encoding a novel human leukocyte alpha-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis X determinant. J. Biol. Chem. 269, 16789-16794 Nishihara, S., Hiraga, T., Ikehara, Y., Iwasaki, H., Kudo, T., Yazawa, S., Morozumi, K., Suda, Y., and Narimatsu, H. (1999a) Molecular behavior of mutant Lewis enzyme. Glycobiology 9, 373-382 Nishihara, S., Iwasaki, H., Kaneko, M., Twada, A., Ito, M., and Narimatsu, H. (1999b) α1,3- fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal GlcNAc residue of polylactosamine chain while the other four α1,3FUT members preferentially fucosylate the inner GlcNAc residue. FEBS Lett 462, 289-294 Nishihara, S., Nakazato, M., Kudo, T., Kimura, H., Ando, T., and Narimatsu, H. (1993) Human alpha-1,3 fucosyltransferase (Fuc-TVI) gene is located at only 13 kb 3’ to the Lewis type fucosyltransferase (Fuc-TIII) gene on chromosome 19. Biochem. Biophys. Res. Commun. 190, 42-46 Pinto, M., Robine-Leon, S., Appay, M.-D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., and Zweibaum, A. (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2. Biol. Cell 47, 323–330 Rajan, V. P., Larsen, R. D., Ajmera, S., Ernst, L. K., and Lowe, J. B. (1989) A cloned human DNA restriction fragment determines expression of a GDP-L-fucose: β-D-galactoside 2-α-L-fucosyltransferase in transfected cells. Evidence for isolation and transfer of the human H blood group locus. J. Biol. Chem. 264, 11158-11167 Reguigne-Arnould, I., Couillin, P., Mollicone, R., Faure, S., Fletcher, A., Kelly, R. J., Lowe, J. B., and Oriol, R. (1995) Relative positions of two clusters of human α- L-fucosyltransferase in 19q(FUT1-FUT2) and 19p(FUT6-FUT3-FUT5) within the microsatellite genetic map of chromosome 19. Cytogenet. Cell Gen. 71, 158-162 Reid, M. E., and Lomas-Francis, C. The Blood Group Antigen Facts Book, Academic Press, San Diego, CA, 1997 Rimmer, E. F., and Horten, M. A. (1984) Expression of myeloid-specific antigens on two human erythroleukaemia cell lines, HEL and K562. Leuk Res. 8, 207-211 Rouger, P., Juszczak, G., Doinel, C., and Salmon, C. (1980) Relationship between I and H antigens, I. A study of the plasma and saliva of a normal population. Transfusion 20, 536-539 Rouquier, S., Lowe, J. B., Kelly, R. J., Fertitta, A. L., Lennon, G. G., and Giorgi, D. (1995) Molecular cloning of a human genomic region containing the H blood group α(1,2) fucosyltransferase gene and two H locus-related DNA restriction fragments. J. Biol. Chem. 270, 4632-4639 Rutherford, T. R., Clegg, J. B., and Weatherall, D. J. (1979) K562 human leukaemic cells synthesize embryonic haemoglobin in response to haemin. Nature (London) 280, 164-165 Salvini, R., Bardoni, A., Valli, M., and Trinchera, M. (2001) β1,3-galactosyltransferase β3Gal-T5 acts on the GlcNAcβ1→3Galβ1→4GlcNAcβ1→ R sugar chains of carcinoembryonic antigen and other N-Linked glycoproteins and is down-regulated in colon adenocarcinomas. J. Biol. Chem. 276, 3564-3573 Sasaki, K., Kurata, K., Funayama, K., Nagata, M., Watanabe, E., Ohta, S., Hanai, N., and Nishi, T. (1994) Expression cloning of a novel alpha 1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis X carbohydrate determinants in leukocytes. J. Biol. Chem. 269, 14730-14737 Sasaki, K., Sasaki, E., Kawashima, K., Hanai, N., Nishit., and Hasegawa, M. (1994) Japanese Patent 0618759 A 940705 Schwientek, T., Nomoto, M., Levery, S. B., Merkx, G., van Kessel, A. G., Bennett, E. P., Hollongsworth, M. A., and Clausen, H. (1999) Control of O-glycan branch formation. Molecular cloning of human cDNA encoding a novel β-1,6-N-acetylglucosaminyltransferase forming core 2 and core 4. J. Biol. Chem. 274, 4504-4512 Siavoshian, S., Blottiere, H. M., Le Foll, E., Kaeffer, B., Cherbut, C., and Galmiche, J. P. (1997) Comparison of the effect of different short chain fatty acid on the growth and differentiation of human colonic carcinoma cell lines in vitro Cell Biol. Int. 21, 281–287 Singh, H., Sem, R., Baltimore, D., and Sharp, P. A. (1986) A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Naure 319, 154-158 Staudt, L. H., Singh, H., Sen, R., Wirth, T., Sharp, P. A., and Baltimore, D. (1986) A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature 323, 640-643 Sutherland, J. A., Turner, A. R., Mannoni, P., McGann, L. E., and Ture, J-M. (1986) Differentiation of K562 leukemia cells along erythroid, macrophage, and megakaryocyte lineages. J. Biol. Res. Modif. 5, 250-262 Tabilio, A., Pelicci, P. G., Vinci, G., Mannoni, P., Civin, C. I., Vainchenker, W., Testa, U., Lipinski, M., Rochant, H., Breton-Gorius, J. (1983) Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res. 43, 4569-4574 Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., and Kannagi, R. (1993) Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res. 53, 354-361 Taniguchi, N., and Honke, K., and Fukuda, M. (2002) Handbook of glycosyltransferases and related genes. Springer-Verlag Tokyo Tenen, D. G., Hromas, R., Licht, J. D., and Zhang, D. E. (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90, 489-519 Testa, U., Henri, A., Bettaieb, A., Titeux, M., Vainchenker, W., Tonthat, H., Docklear, M. C., and Rochant, H. (1982) Regulation of i- and I-antigen expression in the K562 cell line. Cancer Res. 42, 4694-4700 Tetteroo, P. A. T., Massaro, F., Mulder, A., Schreuder-Van Gelder R., Von Dem Borne, A. E. G.. (1984) Megakaryoblastic differentiation of proerythroblastic K562 cell-line cells. Leuk Res. 8, 197-206 Van Klinken, B. J. W., Oussoren, E., Weenink, J. J., Strous, G. J., Buller, H. A, ekker, J., and Einerhand, A. W. C. (1996) The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj. J. 13, 757–768 Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97-130 Weston, B. W., Smith, P. L., Kelly, R. J., and Lowe, J. B. (1992) Molecular cloning of a fourth member of a human α(1,3) fucosyltransferase gene family. Multiple homologous sequences that determine expression of the Lewis X, sialyl Lewis X, and difucosyl sialyl Lewis X epitopes. J. Biol. Chem. 267, 24575-24584 Yazawa, S., Nishihara, S., Iwasaki, H., Asao, T., Nagamachi, Y., Matta, K. L., and Narimatsu, H. (1995) Genetic and enzymatic evidence for Lewis enzyme expression in Lewis-negative cancer patients. Cancer Res. 55, 1473-1478 Yeh, J. C., Ong, E., and Fukuda, M. (1999) Molecular cloning and expression of a novel β-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 254, 3221-3228 Yu, L. C., Twu, Y. C., Chou, M. L., Reid, M. E., Gray, A. R., Moulds, J. M. Chang, C. Y., and Lin, M. (2003) The molecular genetics of the human I locus and molecular background explain the partial association of the adult i phenotype with congenital cataracts. Blood 101, 2081-2088 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36389 | - |
dc.description.abstract | 癌化發生的過程常會伴隨著細胞表面的醣質結構發生改變,這類的醣結構稱
為tumor-associated antigens;其中最著名的例子為sialyl Lewis a(sLea)及sialyl Lewis x ( sLex ) 在大腸直腸癌中的角色。Lewis 抗原建構於重複的 N-acetyllactosamine(Gal-GlcNAc,LacNAc)單元所形成的poly-LacNAc 結構之 上。這些poly-LacNAc 結構可分為type 1 及type 2 chain,及直鏈型的i 或具支鏈 的I 抗原結構。已知i 及I 抗原的表現會隨發育以及癌症發生過程而變化。然而, 造成sLea 及sLex 在大腸直腸癌細胞中增加的分子機制,以及I 結構在其中扮演 的角色截至目前為止仍不十分明確。本研究主要分為兩大部分,第一部份為建立 腸壁細胞Caco-2 的分化模型;並檢視與Lewis 及I 醣抗原相關基因的表現,以 期能了解Lewis 抗原在癌細胞中表現增加的分子機制及I 醣基因可能的角色。第 二部分為利用此Caco-2 細胞以及K562 erythroleukemia 細胞的分化模型,來研究 I 醣抗原基因表現的調控機制。 在建立的Caco-2 細胞分化模型中,我們檢視參與type 1 chain 合成的 β3GalT5,參與H 抗原合成的FUT1、FUT2,參與Lewis 抗原的FUT3、FUT6、 FUT7 以及I 基因,在細胞分化前後的表現。我們發現在Caco-2 分化後,H type 1 抗原的增加是由於更上游的β3GalT5 基因表現增加所導致。此外,Caco-2 細胞分 化後,造成FUT3 及FUT6 的大量表現,然而我們卻並未觀察到相對應的Lewis 抗原表現量的變化,其中的原因値得進一步的研究。 由於參與I 基因轉錄的IGnTC 在Caco-2 細胞分化後有十分顯著的負調控, 於是建立了IGnTC 正向調控的K562 細胞分化模型,以利研究IGnTC 的調控。 研究結果發現,IGnTC 在兩種細胞模型中的表現,是藉由不同的DNA 區塊來調 控。在Caco-2 細胞中IGnTC 的可能調控區為5’ -2572~-1066 的區域,而K562 細胞,則可能落於5’ -318~-251 約67 bp 的區域內。此段DNA 序列包含Oct-2.1、 Sp1 和C/EBPα轉錄因子的可能結合序列。 | zh_TW |
dc.description.abstract | Changes of structure and expression profile of cell surface carbohydrates are often
observed in the tumorigenesis. For example, sialyl Lewis a (sLea) and sialyl Lewis x (sLex) epitopes, well known cancer-associated antigens, increased in colorectal cancerous tissues. Lewis antigens have been known building on a poly-LacNAc (Galβ1-3/4GlcNAcβ-, LacNAc) backbone structure, which can be divided into type 1 (Galβ1-3GlcNAcβ-) and type 2 (Galβ1-4GlcNAcβ-) chains. Linear poly-LacNAc structure called i antigen, whereas the branched one called I antigen. The expression pattern of Ii antigens is developmentally regulated and altered during oncogenesis. The molecular mechanism, which leads to cancer-associated expression of sialyl Lewis x/a and the roles of the branched I-antigen structure and I gene in the formation of multimeric Lewis antigen structure have not been well understood. The main study divided into two parts, the first one is establishment of enterocytic differentiation model in Caco-2 cell, and profiling the expression of Lewis- and I-related genes. The second is regarding the regulatory mechanism of I gene in Caco-2 and K562 differentiation models. We have profiled the expression of β3GalT5, FUT1, FUT2, FUT3, FUT6, FUT7, and I genes before and after the differentiation of Caco-2 cells. We observed that the increment of H type 1 antigens after Caco-2 cell differentiated is due to the enhanced expression of upstream β3GalT5 gene. FUT3 and FUT6 genes are highly expressed at transcriptional level after Caco-2 cell differentiated, but the amount of Lewis antigens is not increased. Further investigation is worth doing. As significant down-regulation of IGnTC gene in differentiated Caco-2 cell, we established another K562 cell differentiation model, which IGnTC was up-regulated, to study the regulation mechanism of IGnTC gene. However, the regulatory elements of IGnTC gene in these two cell models are quite different. The possible regulatory element appears to locate on 5’ -2572~-1066 region in Caco-2 cells, whereas in K562 cells the regulatory element of IGnTC gene appears to locate on 5’ -318~-251 region. The sequence of the -318~-251 region contains the potential binding sites for transcription factors Oct-2.1, Sp1 and C/EBPα. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:59:09Z (GMT). No. of bitstreams: 1 ntu-94-R92b46014-1.pdf: 749674 bytes, checksum: 67c49129701ab3af6ac3d8243771ca22 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
縮寫表…………………………………………………………………………….….1 摘要…………………………………………………………………………….…..…3 英文摘要(Abstract)………………………………………………………..….4 緒論 一、Lewis 及I 醣抗原與癌化及細胞分化之關係………………………………..5 二、H type 1、H type 2、Lewis 及I 醣抗原之合成路徑以及參與的相關基因…6 1. β3GalT5……………………………………………………………………..7 2. FUT1(H)及FUT2(Se)………………………………………………..8 3. FUT3(Lewis)……………………………………………………………..8 4. FUT6………………………………………………………….………….…9 5. FUT7………………………………………………………………………10 6. IGnT……………………………………………………………………….10 三、Caco-2 及K562 細胞分化模型……………………………………………..11 四、研究構想與目的……………………………………………………………..12 實驗材料與方法 實驗材料…………………………………………………………………………..13 實驗方法………………………………………………………………………......15 一、細胞培養………………………………………………………………….…..15 二、流式細胞儀之分析(Flow Cytometry)………………………………………16 三、半定量反轉錄PCR 分析(Semi-quantitative Reverse Transcription-PCR Analysis)……………………………………………………………….…17 四、5’- and 3’-Rapid Amplification of cDNA End(5’- & 3’-RACE)…………17 五、報導質體之構築(Construction of Reporter Plasmids)……………………19 六、Luciferase-Reporter Assay……………………………………………………19 結果 一、Caco-2 細胞分化模型的建立…………………………………………….….20 二、合成H type 1、H type 2、Lewis 以及I 醣抗原的相關基因,在Caco-2 細胞 分化模型的表現情形……………………………………………………..20 1. 合成H type 1 及H type 2 的相關基因…………………………………..21 2. 合成Lewis 抗原的相關基因……………………………………………..22 3. 合成I 醣抗原的IGnT 基因……………………………………………….24 三、IGnTC 基因調控之研究……………………………………………………..25 1. 建立K562 細胞分化模型………………………………………………...25 2. IGnT 基因在Caco-2 細胞的5’轉錄起始位置及3’未轉譯區域…………25 3. IGnTC 基因在Caco-2 細胞與K562 細胞中轉錄活性變化的比較……..26 4. IGnTC 基因在Caco-2 細胞之可能調控區域…………………………….27 5. IGnTC 基因在K562 細胞之可能調控區域………………………………28 討論………………………………………………………………………………….30 參考文獻…………………………………………………………………………...50 表一半定量RT-PCR 所使用的primers 序列……………………………………35 圖一H type 1 和H type 2 抗原在Caco-2 細胞分化前後之表現情形…………..36 圖二合成H type 1 和H type 2 的相關基因,其transcripts 在Caco-2 細胞分化前後的表現情形………………………………………..……..37 圖三合成Lewis 抗原的相關基因,其transcripts 在Caco-2 細胞分化 前後的表現情形………………………..………………………………..38 圖四Lewis 抗原在Caco-2 細胞分化前後的表現情形……………………….…39 圖五IGnT transcripts 以及I 抗原在Caco-2 細胞分化前後的表現情形……..…40 圖六IGnTC transcripts 以及I 抗原在K562 細胞分化前後的表現情形……..…42 圖七IGnT 基因的5’轉錄起始位置與3’未轉譯區域…………………………..43 圖八用於Luciferase-reporter assay 的各種constructs…………………………..44 圖九IGnTC基因在Caco-2 細胞與K562細胞中轉錄活性變化的比較………..45 圖十IGnTC 基因5’區的不同長度片段,在未分化Caco-2 細胞中之 轉錄活性……..…………………………………………………………..46 圖十一IGnTC 基因5’區的不同長度片段,在K562 細胞之轉錄活性…………..48 圖十二IGnTC 5’ -537~-252 的區域,可能包含的轉錄調控區……………………49 附圖一H type 1、H type 2、Lewis 及I 醣抗原的結構及合成路徑..………………59 附圖二從i 抗原(直鏈型的poly-LacNAc 結構)形成I 抗原(支鏈型的poly-LacNAc 結構)的詳細步驟………………………………………………………..60 附圖三人類I locus 示意圖以及表現的三種IGnT 基因結構……………………..61 附圖四pGL3-basic 報導載體……………………………………………………….62 | |
dc.language.iso | zh-TW | |
dc.title | 以細胞分化模型研究Lewis及I醣抗原相關基因
的表現與調控 | zh_TW |
dc.title | Studies of the Expression Profiles and Regulatory Mechanisms of the Lewis- and I-Antigen Related Genes
in Cell Differentiation Models | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱善德,曾婉芳 | |
dc.subject.keyword | 醣抗原,細胞分化模型, | zh_TW |
dc.subject.keyword | Lewis antigen,I antigen,Caco-2, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-22 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 732.1 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。