Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36340
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈麗娟
dc.contributor.authorTing-Ya Yangen
dc.contributor.author楊婷雅zh_TW
dc.date.accessioned2021-06-13T07:57:33Z-
dc.date.available2013-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-21
dc.identifier.citation1. van de Beek D, Drake JM, Tunkel AR. Nosocomial Bacterial Meningitis. N Engl J Med 2010;362:146-54.
2. Huang WC, Lee CH, Liu JW. Clinical Characteristics and Risk Factors for Mortality in Patients with Meningitis Caused by Staphylococcus aureus and Vancomycin Minimal Inhibitory Concentrations Against These Isolates. J Microbiol Immunol Infect 2010;43:470-7.
3. Akins PT, Belko J, Banerjee A, et al. Perioperative management of neurosurgical patients with methicillin-resistant Staphylococcus aureus. J Neurosurg 2010;112:354-61.
4. Scheithauer S, Burgel U, Ryang YM, et al. Prospective surveillance of drain associated meningitis/ventriculitis in a neurosurgery and neurological intensive care unit. J Neurol Neurosurg Psychiatry 2009;80:1381-5.
5. De Bels D, Korinek AM, Bismuth R, Trystram D, Coriat P, Puybasset L. Empirical treatment of adult postsurgical nosocomial meningitis. Acta Neurochir (Wien) 2002;144:989-95.
6. Baltas I, Tsoulfa S, Sakellariou P, Vogas V, Fylaktakis M, Kondodimou A. Posttraumatic meningitis: bacteriology, hydrocephalus, and outcome. Neurosurgery 1994;35:422-7.
7. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 2006;42:S35-S9.
8. Pujal M, Soy D, Codina C, Ribas J. Are higher vancomycin doses needed in venticle-external shunted patients? Pharm World Sci 2006;28:215-21.
9. Pujal M, Soy D, Gratacos L, Dominguez P, Codina C, Ribas J. Are higher vancomycin doses needed in ventricle-external shunted patients? Pharm World Sci 2007;29:498.
10. Katzung BG, Masters SB, Trevor AJ. Basic & clinical pharmacology. London: McGraw-Hill [distributor]; 2009.
11. Stevens DL. The role of vancomycin in the treatment paradigm. Clin Infect Dis 2006;42:S51-S7.
12. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: We Can't Get There from Here. Clin Infect Dis 2011;52:969-74.
13. Murray BE, Nannini EC. Glycopeptides (vancomycin and teicoplanin), streptogramins (quinupristin-dalfopristin), and lipopeptides (daptomycin). In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. Philadelphia, PA: Churchill Livingstone/Elsevier; 2010:449-67.
14. Krogstad DJ, Parquette AR. Defective killing of enterococci - a common property of antimicrobial agents acting on the cell wall. Antimicrob Agents Chemother 1980;17:965-8.
15. Larsson AJ, Walker KJ, Raddatz JK, Rotschafer JC. The concentration-independent effect of monoexponential and biexponential decay in vancomycin concentrations on the killing of Staphylococcus aureus under aerobic and anaerobic conditions. J Antimicrob Chemother 1996;38:589-97.
16. Lowdin E, Odenholt I, Cars O. In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 1998;42:2739-44.
17. Moise PA, Forrest A, Bhavnani SM, Birmingham MC, Schentag JJ. Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am J Health Syst Pharm 2000;57:S4-S9.
18. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 2004;43:925-42.
19. Drew RH, Lu I, Joyce M, Benjamin DK, Jr., Fowler VG. Lack of relationship between predicted area under the time-concentration curve/minimum inhibitory concentration and outcome in vancomycin-treated patients with Staphylococcus aureus bacteremia. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy 2004;44:36.
20. Sakoulas G, Moellering RC, Jr. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 2008;46 Suppl 5:S360-7.
21. Gould IM. Clinical relevance of increasing glycopeptide MICs against Staphylococcus aureus. Int J Antimicrob Agents 2008;31 Suppl 2:1-9.
22. Steinkraus G, White R, Friedrich L. Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001-05. J Antimicrob Chemother 2007;60:788-94.
23. Wang G, Hindler JF, Ward KW, Bruckner DA. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 2006;44:3883-6.
24. Lodise TP, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 2008;52:3315-20.
25. Soriano A, Marco F, Martinez JA, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008;46:193-200.
26. Matzke GR, Halstenson CE, Olson PL, Collins AJ, Abraham PA. Systemic absorption of oral vancomycin in patients with renal-insufficiency and antibiotic-associated colitis. Am J Kidney Dis 1987;9:422-5.
27. Levy M, Koren G, Dupuis L, Read SE. Vancomycin-induced red man syndrome. Pediatrics 1990;86:572-80.
28. Healy DP, Sahai JV, Fuller SH, Polk RE. Vancomycin-induced histamine release and red man syndrome - comparison of 1-hour and 2-hour infusions. Antimicrob Agents Chemother 1990;34:550-4.
29. Polk RE, Healy DP, Schwartz LB, Rock DT, Garson ML, Roller K. Vancomycin and the red-man syndrome - pharmacodynamics of histamine-release. J Infect Dis 1988;157:502-7.
30. Blouin RA, Bauer LA, Miller DD, Record KE, Griffen WO. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother 1982;21:575-80.
31. Brown N, Ho DH, Fong KL, et al. Effects of hepatic function on vancomycin clinical pharmacology. Antimicrob Agents Chemother 1983;23:603-9.
32. Cutler NR, Narang PK, Lesko LJ, Ninos M, Power M. Vancomycin disposition - the importance of age. Clin Pharmacol Ther 1984;36:803-10.
33. Krogstad DJ, Moellering RC, Jr., Greenblatt DJ. Single-dose kinetics of intravenous vancomycin. J Clin Pharmacol 1980;20:197-201.
34. Rotschafer JC, Crossley K, Zaske DE, Mead K, Sawchuk RJ, Solem LD. Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother 1982;22:391-4.
35. Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 1986;11:257-82.
36. Rodvold KA, Blum RA, Fischer JH, et al. Vancomycin pharmacokinetics in patients with various degrees of renal-function. Antimicrob Agents Chemother 1988;32:848-52.
37. Moise-Broder PA. Vancomycin. In: Burton ME, ed. Applied pharmacokinetics & pharmacodynamics : principles of therapeutic drug monitoring. Baltimore: Lippincott Williams & Wilkins; 2006:328-40.
38. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2009;66:82-98.
39. Sun H, Maderazo EG, Krusell AR. Serum protein-binding characteristics of vancomycin. Antimicrob Agents Chemother 1993;37:1132-6.
40. Zokufa HZ, Solem LD, Rodvold KA, Crossley KB, Fischer JH, Rotschafer JC. The influence of serum albumin and alpha 1-acid glycoprotein on vancomycin protein binding in patients with burn injuries. J Burn Care Rehabil 1989;10:425-8.
41. Chen Y, Norris RL, Schneider JJ, Ravenscroft PJ. The influence of vancomycin concentration and the pH of plasma on vancomycin protein binding. J Pharmacol Toxicol Methods 1992;28:57-60.
42. Morita K, Yamaji A. Changes in the serum protein binding of vancomycin in patients with methicillin-resistant Staphylococcus aureus infection: the role of serum alpha 1-acid glycoprotein levels. Ther Drug Monit 1995;17:107-12.
43. Rybak MJ, Albrecht LM, Berman JR, Warbasse LH, Svensson CK. Vancomycin pharmacokinetics in burn patients and intravenous drug-abusers. Antimicrob Agents Chemother 1990;34:792-5.
44. Berthoin K, Ampe E, Tulkens PM, Carryn S. Correlation between free and total vancomycin serum concentrations in patients treated for Gram-positive infections. Int J Antimicrob Agents 2009;34:555-60.
45. Nau R, Sorgel F, Eiffert H. Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections. Clin Microbiol Rev 2010;23:858-83.
46. Caricato A, Pennisi M, Mancino A, et al. Levels of vancomycin in the cerebral interstitial fluid after severe head injury. Intensive Care Med 2006;32:325-8.
47. de Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 2002;41:691-703.
48. Ahmed A. A critical evaluation of vancomycin for treatment of bacterial meningitis. Pediatr Infect Dis J 1997;16:895-903.
49. Ahmed A, Jafri H, Lutsar I, et al. Pharmacodynamics of vancomycin for the treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1999;43:876-81.
50. Cabellos C, Martinezlacasa J, Martos A, et al. Influence of dexamethasone on efficacy of ceftriaxone and vancomycin therapy in experimental pneumococcal meningitis. Antimicrob Agents Chemother 1995;39:2158-60.
51. Paris MM, Hickey SM, Uscher MI, Shelton S, Olsen KD, McCracken GH, Jr. Effect of dexamethasone on therapy of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1994;38:1320-4.
52. Ricard JD, Wolff M, Lacherade JC, et al. Levels of vancomycin in cerebrospinal fluid of adult patients receiving adjunctive corticosteroids to treat pneumococcal meningitis: A prospective multicenter observational study. Clin Infect Dis 2007;44:250-5.
53. Nolan CM, Flanigan WJ, Rastogi SP, Brewer TE. Vancomycin penetration into CSF during treatment of patients receiving hemodialysis. South Med J 1980;73:1333-4, 8.
54. Leroux P, Howard Iii MA, Richard Winn H. Vancomycin pharmacokinetics in hydrocephalic shunt prophylaxis and relationship to ventricular volume. Surg Neurol 1990;34:366-72.
55. Viladrich PF, Gudiol F, Linares J, et al. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother 1991;35:2467-72.
56. Albanese J, Leone M, Bruguerolle B, Ayem ML, Lacarelle B, Martin C. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother 2000;44:1356-8.
57. Pfausler B, Spiss H, Beer R, et al. Treatment of staphylococcal ventriculitis associated with external cerebrospinal fluid drains: a prospective randomized trial of intravenous compared with intraventricular vancomycin therapy. J Neurosurg 2003;98:1040-4.
58. Wang Q, Shi ZH, Wang JF, Shi GZ, Wang S, Zhou HX. Postoperatively administered vancomycin reaches therapeutic concentration in the cerebral spinal fluid of neurosurgical patients. Surg Neurol 2008;69:126-9.
59. Golper TA, Noonan HM, Elzinga L, et al. Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther 1988;43:565-70.
60. Nivoche Y, Contrepois A, Cremieux AC, Carbon C. Vancomycin in rabbits - pharmacokinetics, extra-vascular diffusion, renal excretion and Interactions with furosemide. J Pharmacol Exp Ther 1982;222:237-40.
61. Nielsen HE, Hansen HE, Korsager B, Skov PE. Renal excretion of vancomycin in kidney-disease. Acta Med Scand 1975;197:261-4.
62. Matzke GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal-function. Antimicrob Agents Chemother 1984;25:433-7.
63. Birt JK, Chandler MH. Using clinical data to determine vancomycin dosing parameters. Ther Drug Monit 1990;12:206-9.
64. Yasuhara M, Iga T, Zenda H, et al. Population pharmacokinetics of vancomycin in Japanese adult patients. Ther Drug Monit 1998;20:139-48.
65. Marti R, Rosell M, Pou L, Garcia L, Pascual C. Influence of biochemical parameters of liver function on vancomycin pharmacokinetics. Pharmacol Toxicol 1996;79:55-9.
66. Tozer TN, Rowland M. Clinical pharmacokinetics and pharmacodynamics: concepts and applications Philadelphia: Wolters Kluwer Health/Lippincott William & Wilkins; 2011.
67. Murphy JE, Gillespie DE, Bateman CV. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters. Am J Health Syst Pharm 2006;63:2365-70.
68. Hiraki Y, Onga T, Mizoguchi A, Tsuji Y. Investigation of the prediction accuracy of vancomycin concentrations determined by patient-specific parameters as estimated by Bayesian analysis. J Clin Pharm Ther 2010;35:527-32.
69. Pou L, Rosell M, Lopez R, Pascual C. Changes in vancomycin pharmacokinetics during treatment. Ther Drug Monit 1996;18:149-53.
70. Bauer LA. Applied clinical pharmacokinetics. New York: McGraw-Hill Medical; 2008.
71. Ducharme MP, Slaughter RL, Edwards DJ. Vancomycin pharmacokinetics in a patient population - effect of age, gender, and body-weight. Ther Drug Monit 1994;16:513-8.
72. Guay DRP, Vancebryan K, Gilliland S, Rodvold K, Rotschafer J. Comparison of vancomycin pharmacokinetics in hospitalized elderly and young patients using a Bayesian forecaster. J Clin Pharmacol 1993;33:918-22.
73. Moellering RC, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function - a nomogram for dosage. Ann Intern Med 1981;94:343-6.
74. Aldaz A, Ortega A, Idoate A, Giraldez J, Brugarolas A. Effects of hepatic function on vancomycin pharmacokinetics in patients with cancer. Ther Drug Monit 2000;22:250-7.
75. Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol 1998;54:621-5.
76. Vance-Bryan K, Guay DR, Gilliland SS, Rodvold KA, Rotschafer JC. Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother 1993;37:436-40.
77. Penzak SR, Gubbins PO, Rodvold KA, Hickerson GL. Therapeutic drug monitoring of vancomycin in a morbidly obese patient. Ther Drug Monit 1998;20:261-5.
78. Sadoh S, Tsuji Y, Tsukamoto K. Correlation of pharmacokinetic parameters with serum vancomycin concentration in elderly patients with malignancies. Yakugaku Zasshi 2010;130:69-73.
79. Buelga DS, de Gatta MDF, Herrera EV, Dominguez-Gil A, Garcia MJ. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrob Agents Chemother 2005;49:4934-41.
80. Le Normand Y, Milpied N, Kergueris M-F, Harousseau J-L. Pharmacokinetic parameters of vancomycin for therapeutic regimens in neutropenic adult patients. Int J Biomed Comput 1994;36:121-5.
81. Omote S, Yano Y, Hashida T, et al. A Retrospective analysis of vancomycin pharmacokinetics in Japanese cancer and non-cancer patients based on routine trough monitoring data. Biol Pharm Bull 2009;32:99-104.
82. Elligsen M, Walker SAN, Walker SE, Simor A. Optimizing initial vancomycin dosing in burn patients. Burns 2011;37:406-14.
83. Dolton M, Xu H, Cheong E, et al. Vancomycin pharmacokinetics in patients with severe burn injuries. Burns 2010;36:469-76.
84. Pea F, Porreca L, Baraldo M, Furlanut M. High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 2000;45:329-35.
85. Shimamoto Y, Shiiki S, Tominari S, et al. The effect of dobutamine on the pharmacokinetic of vancomycin in a patient with heart failure. Ther Drug Monit 2007;29:238.
86. McKindley DS, Fabian TC, Boucher BA, Croce MA, Proctor KG. Antibiotic pharmacokinetics following fluid resuscitation from traumatic shock. Arch Surg 1995;130:1321-9.
87. Vancomycin. In: DrugPointsR System [Internet database]. Greenwood Village, Colo: Thomson Reuters (Healthcare) Inc. Updated periodically. In.
88. DiPiro JT. Concepts in clinical pharmacokinetics. Bethesda, MD: American Society of Health-System Pharmacists; 2005.
89. Albrecht LM, Rybak MJ, Boike SC, Pancorbo S. Comparison of serum sampling methods for determining vancomycin dosage regimens. Ther Drug Monit 1988;10:85-90.
90. Abbott Laboratories, Diagnostic Division. Abbott AxSYM(R) system Vancomycin II packet insert. 2002.
91. Fan-Havard P, Nahata MC, Bartkowski MH, Barson WJ, Kosnik EJ. Pharmacokinetics and cerebrospinal fluid (CSF) concentrations of vancomycin in pediatric patients undergoing CSF shunt placement. Chemotherapy 1990;36:103-8.
92. Jorgenson L, Reiter PD, Freeman JE, et al. Vancomycin disposition and penetration into ventricular fluid of the central nervous system following intravenous therapy in patients with cerebrospinal devices. Pediatr Neurosurg 2007;43:449-55.
93. Rangel-Castilla L, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin 2008;26:521-41.
94. Moza K, McMenomey SO, Delashaw JB, Jr. Indications for cerebrospinal fluid drainage and avoidance of complications. Otolaryngol Clin North Am 2005;38:577-82.
95. Marion DWMD, Letarte PBMD. Management of Intracranial Hypertension. Contemporary Neurosurgery 1997;19:1-6.
96. Rose JC, Mayer SA. Optimizing blood pressure in neurological emergencies. Neurocrit Care 2004;1:287-99.
97. Sabharwal N, Rao GS, Ali Z, Radhakrishnan M. Hemodynamic changes after administration of mannitol measured by a noninvasive cardiac output monitor. J Neurosurg Anesthesiol 2009;21:248-52.
98. Rotenberg B, Tam S, Ryu WH, Duggal N. Microscopic versus endoscopic pituitary surgery: a systematic review. Laryngoscope 2010;120:1292-7.
99. Pea F, Bertolissi M, Di Silvestre A, Poz D, Giordano F, Furlanut M. TDM coupled with Bayesian forecasting should be considered an invaluable tool for optimizing vancomycin daily exposure in unstable critically ill patients. Int J Antimicrob Agents 2002;20:326-32.
100. Scaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int J Antimicrob Agents 2008;32:294-U19.
101. Garaud JJ, Regnier B, Inglebert F, Faurisson F, Bauchet J, Vachon F. Vancomycin pharmacokinetics in critically ill patients. J Antimicrob Chemother 1984;14 Suppl D:53-7.
102. Polard E, Le Bouquin V, Le Corre P, et al. Non steady state and steady state PKS Bayesian forecasting and vancomycin pharmacokinetics in ICU adult patients. Ther Drug Monit 1999;21:395-403.
103. Llopis-Salvia P, Jimenez-Torres NV. Population pharmacokinetic parameters of vancomycin in critically ill patients. J Clin Pharm Ther 2006;31:447-54.
104. Garcia MD, Revilla N, Calvo MV, Dominguez-Gil A, Navarro AS. Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 2007;33:279-85.
105. Pea F, Furlanut M, Negri C, et al. Prospectively Validated Dosing Nomograms for Maximizing the Pharmacodynamics of Vancomycin Administered by Continuous Infusion in Critically Ill Patients. Antimicrob Agents Chemother 2009;53:1863-7.
106. Revilla N, Martin-Suarez A, Perez MP, Gonzalez FM, de Gatta MDF. Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br J Clin Pharmacol 2010;70:201-12.
107. Kees MG, Hilpert JW, Gnewuch C, Kees F, Voegeler S. Clearance of vancomycin during continuous infusion in Intensive Care Unit patients: correlation with measured and estimated creatinine clearance and serum cystatin C. Int J Antimicrob Agents 2010;36:545-8.
108. Jeurissen A, Sluyts I, Rutsaert R. A higher dose of vancomycin in continuous infusion is needed in critically ill patients. Int J Antimicrob Agents 2011;37:75-7.
109. Jelliffe R. Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am J Nephrol 2002;22:320-4.
110. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004;8:R204-12.
111. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31-41.
112. Sawchuk RJ, Zaske DE. Pharmacokinetics of dosing regimens which utilize multiple intravenous infusions: gentamicin in burn patients. J Pharmacokinet Biopharm 1976;4:183-95.
113. Chen S-C. Evaluation of a method for initating vancomycin therapy and an analysis of the pharmacokinetic parameters in inpatients of a medical center. Graduate Institute of Clinical Pharmacy 2003;Master:1-139.
114. Minville V, Asehnoune K, Ruiz S, et al. Increased creatinine clearance in polytrauma patients with normal serum creatinine: a retrospective observational study. Crit Care 2011;15.
115. Udy A, Boots R, Senthuran S, et al. Augmented Creatinine Clearance in Traumatic Brain Injury. Anesth Analg 2010;111:1505-10.
116. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented Renal Clearance Implications for Antibacterial Dosing in the Critically Ill. Clin Pharmacokinet 2010;49:1-16.
117. Hoste EA, Damen J, Vanholder RC, et al. Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 2005;20:747-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36340-
dc.description.abstract背景及目的
臨床上觀察神經外科病人在使用傳統劑量之萬古黴素時,常被測量到低於理想的血中濃度數值。本研究的目的在於描述神經外科病人之萬古黴素藥品動態學特性。
方法
回溯性分析一醫學中心之神經外科成年病人於2009年1月至2010年10月的療劑監測資料,此研究排除腎衰竭、不穩定腎功能、肥胖、休克或第三容積體液堆積之病人。病人的基本資料、併用甘露醇(mannitol)治療、腦脊髓液引流及尿液體積被列為可能影響萬古黴素藥品動態學之相關因子,並使用相關性分析及複線性迴歸分析評估各因子之貢獻度。本研究使用SASR 9.1軟體進行統計分析,以p < 0.05作為統計顯著水準。
結果
從73位病人共取得98套萬古黴素血清濃度數值進行分析,病人之平均年齡為54 ± 16歲,平均血清肌酸酐廓清率(ClCr)為78 ± 26 mL/min,其平均萬古黴素廓清率(ClV)及分佈體積(Vd)為101 ± 41 mL/min(為ClCr之1.30 ± 0.38倍)及0.93 ± 0.27 L/kg。在次組分析中觀察到加護病房病人之ClV高於一般病房病人(分別為ClCr之1.57 ± 0.34倍及1.16 ± 0.32倍,p < 0.05),但兩組間之Vd並無差異。複線性迴歸分析中發現加護病房病人之ClV經ClCr校正後與尿液體積和腦脊髓液引流具有正相關性。
最後得到的藥品動態學模式如下:(1)對於神經外科加護病房病人ClV (mL/min) = -19.6 + 1.5 ClCr (mL/min) + 0.4 UO (mL/kg/day),調整後之判定係數(adjR2)為0.738。(2)對於神經外科一般病房病人 ClV (mL/min) = 13.6 + 1.0 ClCr (mL/min),adjR2為0.530。(3)對於全體神經外科病人 V_d (L)=21×e^((0.009×BW))×e^((0.005×Age))×e^((0.149×Sex)),adjR2為0.222。其中ClCr係以Cockcroft-Gault公式計算,UO為療劑監測當天病人之尿液體積,BW為體重(公斤),Age為年紀(歲),Sex為性別(男性以1代入、女性以0代入)。
利用本研究建立之藥品動態學模型可計算出符合此類病人族群特性之萬古黴素建議劑量,其中不論神經外科加護病房病人或普通病房病人所需劑量皆顯著大於傳統給藥劑量,且加護病房病人所需劑量又顯著高於普通病房病人所需劑量。
結論
神經外科病人與過去文獻報告相比具有較高之萬古黴素廓清率,本研究針對此類病人建立較為合適之藥品動態學模型,但仍需要後續研究進行模型驗證及了解萬古黴素廓清率增加之機轉。
zh_TW
dc.description.abstractBackground and objective
Inadequate vancomycin peak/trough concentrations were observed in neurosurgical patients using conventional vancomycin dosage. The aim of the study was to characterize the pharmacokinetic properties of vancomycin for adult neurosurgical patients.
Methods
Retrospective analysis of vancomycin pharmacokinetic parameters was performed for adult neurosurgical patients from routine therapeutic drug monitoring (TDM) data in a medical center during 2009/01-2010/10. Patients were excluded if they were with renal failure, unstable renal function, obesity, shock, or third space fluid accumulation. Patients’ demographic characteristics, mannitol use, cerebrospinal fluid (CSF) drainage, and urine output were recorded as candidate covariates. Pearson’s and Spearman’s correlation tests followed by multiple linear regression analysis were used to assess the contribution of each covariate. SASR 9.1 was used for statistical analysis, and statistical tests were performed at the 0.05 level of significance.
Results
A total of 98 sets peak/trough serum concentrations obtained from 73 patients were analyzed. Their mean age was 54 ± 16 years old, with an average creatinine clearance (ClCr) level of 78 ± 26 mL/min. The mean vancomycin clearance (ClV) and volume of distribution (Vd) were 101 ± 41 mL/min (1.30 ± 0.38 folds of Cl¬Cr) and 0.93 ± 0.27 L/kg in the neurosurgical patients. In subgroup analysis, a significantly higher ClV was observed in ICU patients than in general ward patients, 1.57 ± 0.34 folds vs. 1.16 ± 0.32 folds of ClCr in each group (p < 0.05). No difference was observed in the Vd between ICU and general ward patients. Multiple linear regression of Cl¬V in the ICU subpopulation showed that urine output and CSF drainage were positively associated with ClCr adjusted ClV.
The final models selected in the study are as follows: (1) ClV (mL/min) = -19.6 + 1.5 ClCr (mL/min) + 0.4 UO (mL/kg/day) for ICU patients, adjusted R2 (adjR2) 0.738. (2) ClV (mL/min) = 13.6 + 1.0 ClCr (mL/min) for general ward patients, adjR2 0.530. (3) V_d (L)=21×e^((0.009×BW))×e^((0.005×Age))×e^((0.149×Sex)) for all neurosurgical patients, adjR2 0.222. In the models, ClCr is calculated by the Cockcroft-Gault method. UO represents the urine output volume on TDM day, BW is body weight in kg, age is in year, and sex is 1 for male and 0 for female.
Using the pharmacokinetic models built in this study, the neurosurgical patients needed significantly more vancomycin dose than conventional dosage, no matter patients in ICU or general ward. Besides, the calculated empirical dose for neurosurgical ICU patients was also significantly higher than that for general ward patients.
Conclusion
The ClV in adult neurosurgical patients is significantly elevated when adjusted by individual ClCr. The equations newly generated in our study may provide more appropriate models in these patients. Further studies are necessary to validate the equations and investigate the mechanism of this phenomenon.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:57:33Z (GMT). No. of bitstreams: 1
ntu-100-R96451003-1.pdf: 1661146 bytes, checksum: 9fe8584195e163de22bdf6c73a3ddaf3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents… I
Figures….. VI
Tables…… VII
Abbreviations IX
Chapter 1 Preface 1
Chapter 2 Background 2
2.1 Vancomycin basic properties 2
2.1.1 Pharmacodynamic properties 2
2.1.2 Pharmacokinetic properties 3
2.1.3 Factors affecting vancomycin pharmacokinetics 7
2.1.4 Vancomycin dosing protocol 7
2.1.5 Therapeutic drug monitoring 7
2.2 Neurosurgery and vancomycin pharmacokinetics 8
2.2.1 Cerebrospinal fluid drainage 9
2.2.2 Fluid status and increased urine output 10
2.3 Critical ill status and vancomycin pharmacokinetics 10
Chapter 3 Study Objective 13
Chapter 4 Study Design and Subjects 14
4.1 Study design 14
4.2 Study subjects 14
4.2.1 Patient population 14
4.2.2 Inclusion criteria 14
4.2.3 Exclusion criteria 14
4.3 Data collection 15
4.3.1 Data source 15
4.3.2 Recorded information 15
4.3.3 Derived information 16
4.4 Data analysis 16
4.4.1 Data pooling 16
4.4.2 Statistical methods 17
4.4.3 Statistical software 18
4.5 Formula 18
Chapter 5 Results 20
5.1 Data collection 20
5.2 Excluded data 20
5.3 Demographic and basic characteristics 21
5.4 Vancomycin pharmacokinetic parameters 22
5.5 Correlation analysis 22
5.6 Multiple linear regression model selection 23
5.6.1 Vancomycin clearance 23
5.6.2 Vancomycin volume of distribution 24
5.7 Subgroup analysis 25
5.7.1 ICU vs. general ward 25
5.7.2 Subgroup with urine output data 28
5.8 Model prediction ability and regression diagnostics 29
5.9 Empirical dose recommendation 30
Chapter 6 Discussion 32
6.1 Recommended maintenance dose better than original protocol 32
6.2 Pharmacokinetic characteristics of neurosurgical patients 32
6.2.1 Larger vancomycin clearance 32
6.2.2 ICU and general ward patients being distinct populations 33
6.2.3 Underlying factors making ICU care a predictor for adjusted vancomycin clearance 34
6.2.4 Vancomycin clearance of general ward patients being less predictable 35
6.2.5 Vancomycin volume of distribution showing marked variation 36
6.3 Effect of urine output amount on vancomycin clearance 37
6.3.1 Neurosurgical patients having urine output higher than normal subjects 37
6.3.2 Urine output able to predict adjusted vancomycin clearance in ICU patients 37
6.3.3 Mannitol as the surrogate marker for high urine output being less appropriate 38
6.4 Effect of CSF drainage on vancomycin clearance 38
6.4.1 External and internal CSF drainage exhibiting distinct characteristics 38
6.4.2 External CSF drainage being a secondary predictor for vancomycin clearance likely 39
6.5 Study population 40
6.5.1 Sample size 40
6.5.2 Renal function of the patients 40
6.5.3 Neurological status 41
6.5.4 Comorbidity 41
6.6 Excluded data 41
6.7 Study limitations 42
6.7.1 Study population 42
6.7.2 Data collection 42
6.7.3 Data analysis 43
Chapter 7 Conclusion and Recommendations 44
7.1 Most important covariates and best regression models 44
7.2 Clinical recommendation 44
7.3 Future perspective 44
References 45
dc.language.isoen
dc.title萬古黴素在神經外科病人之藥品動態學研究zh_TW
dc.titlePharmacokinetics of Vancomycin in Neurosurgical Patientsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor林淑文
dc.contributor.oralexamcommittee王國川,黃金鼎,溫明芳
dc.subject.keyword萬古黴素,藥品動態學,神經外科,zh_TW
dc.subject.keywordVancomycin,Pharmacokinetics,Neurosurgery,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2011-07-21
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved