Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36335
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳少傑(Sao-Jie Chen)
dc.contributor.authorYi-Cheng Hsiehen
dc.contributor.author謝宜政zh_TW
dc.date.accessioned2021-06-13T07:57:24Z-
dc.date.available2006-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-24
dc.identifier.citationREFERENCE
[1] A. S. TANENBAUM, Computer Networks, 4th edition, Prentice-Hall, 2001.
[2] R. Perron, 10Gb/s LAN Networking: Optical Fiber LAN Design Considerations,
Cable Design Technologies, Aug. 2001.
[3] IEEE Standard 802.3ae.
[4] Intel in Communications, 10 Gigabit Ethernet Technology Overview.
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/
pro10gbe_lr_sa_wp.pdf
[5] International Engineering Consortium, Fiber Optical Technology.
http://www.iec.org/online/tutorials/fiber_optic/
[6] B. Razavi, Design of Integrated Circuits for Optical Communications,
McGraw-Hill, 2003.
[7] A. X. Widmer and P. A. Franaszek, “A DC-Balanced, Partitioned-Block, 8B/10B
Transmission Code,” IBM J. Res. And Develop, vol. 27, Sep. 1983, pp.440-451.
[8] J. Cao,”OC-192 Receiver in Standard 0.18μm CMOS,” ISSCC Digest of
Technical Paper, vol. 1, Feb. 2002, pp. 250-464.
[9] J. Cao, and Michael Green, “OC-192 Transmitter and Receiver in Standard
0.18μm CMOS, “ IEEE J. Solid-State Circuit, vol. 37, no. 12, Dec. 2002, pp.
1768-1780.
[10] B. Razavi, “Challenges in the Design of High-Speed Clock and Data
Recovery Circuits,” IEEE Communication Magazine, vol. 40, Aug. 2002, pp.
94-101.
[11] J. C. Scheytt, G.. Hanke, and U. Langmann, “A 0.155, 0.622, and 2.488 Gb/s
Automatic Bit Rate Selecting Clock and Data Recovery IC for Bit Rate
Transparent SDH systems,” ISSCC Digest of Technical Papers, Feb. 1999, pp.
348-349
[12] J. Lee, K. S. Kundert, and B. Razavi, “Modeling of Jitter in Bang-Bang Clock
and Data Recovery Circuits,” in Proc. Custom Integrated Circuits Conf., 2003,
pp. 711-714.
[13] D. Richman, “Color-Carrier Reference Phase Synchronization Accuracy in
NTSC Color Television,” Proc. IRE, vol. 42, Jan. 1954, pp. 106-133.
[14] F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and
Substrate Noise,” IEEE Trans. Circuits and System, Part II, vol. 46, no. 1, Jan.
1999, pp 56-62.
[15] Tanabe, A., Umetani, M., Fujiwara, I., Ogura, T., Kataoka, K., Okihara, M.,
Sakuraba, H., Endoh, T., Masuoka, F., “0.18-μm CMOS 10Gb/s
68
Multiplexer/Demultiplexer ICs Using Current Mode Logic with Tolerance to
Threshold Voltage Fluctuation,” IEEE J. Solid-State Circuits, vol. 36, issue 6,
June 2001, pp. 988-996.
[16] J. Lee and B. Razavi, ”A 40-Gb/s Clock and Data Recovery Circuit in 0.18-μm
CMOS Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, Dec. 2003,
pp. 2181-2190.
[17] W. S. T. Yan and H. C. Luong, ”A 900-MHz CMOS Low Phase Noise Voltage
Controlled Ring Oscillator,” IEEE Transactions on Analog and Digital Signal
Processing, vol. 48, no. 2, Feb. 2001, pp. 216-221.
[18] J. Lee and B. Kim, “A Low-Noise Fast-Lock Phase-Locked Loop with
Adaptive Bandwidth Control,” IEEE J. Solid-State Circuits, vol. 35, no. 8, Aug.
2000, pp. 1137-1145.
[19] C. Y. Yang, G.. K. Dehnh, J. M. Hsu, and S. I. Liu, “New Dynamic Flip-Flops
for High-Speed Dual-Modulus Prescaler,” IEEE J. Solid-State Circuits, vol. 33,
no. 10, Oct. 1998, pp. 1568-1571.
[20] B. Stilling, “Bit Rate and Protocol Independent Clock and Data Recovery,”
Electronics Letters, vol. 36, no. 6, Apr. 2000, pp. 824-825.
[21] W. Rhee, ”Design of High-Performance CMOS Charge Pump in Phase-Locked
Loops,” IEEE International Symposium Circuits and Systems, vol. 2, June 1999,
pp. 545-548.
[22] G. Gutierrez and S. Kong, ”Unaid 2.5Gb/s Silicon Bipolar Clock and Data
Recovery IC,” IEEE Radio Freq. Int Ckt Symp., June1998, pp. 173-176.
[23] R. J. Yang and S. I. Liu, ”A 1.7~3.125Gbps Clock and Data Recovery Circuit
Using a Gated Frequency Detector,” IEEE Asia-Pacific Advanced System
Integrated Circuits Conference 2004, Aug. 4-5, 2004, pp. 326-329.
[24] Lee, M.-J.E., Dally, W.J., Poulton, J., Greer, T., Edmondson, J., Farjad-Rad, R.,
Hiok-Tiaq Ng, Rathi, R., Senthinathan, R., “A Second-Order Semi-Digital
Clock Recovery Circuit Based on Injection Locking,” IEEE J. Solid-State
Circuits, vol. 38, no. 12, Dec. 2003, pp. 2101-2110.
[25] S. P. Chen, Design and Implementation of a 3.125-Gb/s CDR, Master Thesis,
Graduate Institute of Electric Engineering, National Taiwan University, June
2003.
[26] W. H. Tu, 10GBASE-LX4 Ethernet Clock and Data Recovery, Master Thesis,
Graduate Institute of Electric Engineering, National Taiwan University, June
2003.
[27] K. Y. Cheng, J. Wei, S. Li, K. Donnelly, and C. Huang, ”A 0.4-4Gb/s using
On-chip Regulated Dual-Loop PLLs,” in Proc. IEEE Symposium on VLSI
Circuits, 2002, pp. 88-91.
[28] S. B. Anand and B. Razavi, “A 2.75Gb/s CMOS Clock Recovery Circuit with
Broad Capture Range,” IEEE International Solid-State Circuits Conference,
Session 14, 2001, pp. 214-215.
[29] S. B. Anand and B. Razavi, “A CMOS Clock Recovery Circuit for 2.5-Gb/s
NRZ Data,” IEEE J. Solid-State Circuits, vol. 36, no 3, Mar. 2001, pp. 432-439.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36335-
dc.description.abstract光通訊收發機系統中,時脈與資料回復電路的設計是最錯綜複雜的零件。未來10GBASE-LX4乙太網路在數千兆位元的區域網路光通訊系統中扮演相當重要的角色。由於低成本、低功率、及高度整合的優勢,我們使用TSMC 0.18μm 1P6M CMOS製程來實現此高速的電路。
  因為系統要求位元錯誤率要小於十的負十二次方,這將使的時脈與資料回復電路設計上更加困難。而此篇論文使用了雙迴路追溯路徑來達到更好的抖動效能。而新設計的相位偵測器可降低控制線上的漣波使得電壓控制振盪器穩定震盪。我們同時也設計一個雙端控制的兩級延遲單元環形電壓控制振盪器,此震盪器具備低功率消耗、大的調變區域、以及更好的相位雜訊效能。
  使用長度為二的七次方減一的PRBS資料輸入,在鎖定後的回復輸出時脈具有峰對峰值為2.2ps的抖動。使用1.8伏的電源,整個時脈與資料回復電路有75mW功率消耗。同時晶片的使用面積為0.75mm x 0.75mm。
zh_TW
dc.description.abstractThe design of Clock and Data Recovery (CDR) circuits is the most complicated part of an optical transceiver. In the near future, 10GBASE-LX4 Ethernet will play an important role in the multi-gigabit optical communication system of Local Area networks (LANs). We use TSMC 0.18μm 1P6M CMOS technology to implement this high speed circuit to achieve low cost, low power consumption, and highly integrated capability.
Since the required Bit Error Ratio (BER) must be less than 10-12, there will be a serious design challenge for the CDR. This Thesis presents a CDR architecture which has dual loop tracking path to achieve better jitter performance. The new phase detector (PD) which reduces the control line ripples makes the VCO oscillating steadily. We also design a two-stage ring VCO with a dual-control node to have low power dissipation, wide tuning range, and better phase noise performance.
The recovery clock exhibits a peak to peak jitter of 2.2ps for a PRBS sequence of length 27-1. The CDR circuit dissipates a total power of 75mW with a 1.8V supply and occupies a die area of 0.75 mm x 0.75 mm.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:57:24Z (GMT). No. of bitstreams: 1
ntu-94-R92943101-1.pdf: 8036374 bytes, checksum: 7e5f23e9e14ba123f3214613612f08f1 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTABLE OF CONTENTS
ABSTRACT ..…………………………………………………………………… i
LIST OF FIGURES ..…………….………………………...………………... v
LIST OF TABLES ..…………………………………………………….……. ix
1. INTRODUCTION …..……………………………………………..……... 1
1.1 Motivation ..……..…………………………………………..……… 1
1.2 Generic Optical System ……………………………………………. 2
1.3 Overview of Thesis …..…...…………...…………………………..... 3
2. CDR IN 10GBASE-LX4 ARCHITECTURE ….…………………………. 5
2.1 10GBASE-LX4 Architecture ……..…………………………………. 5
2.1.1 Overview …………...…..……………………………………. 5
2.1.2 PMD and MDI ……..……..…………………………………. 7
2.1.3 10GBASE-LX4 Architecture …..……………….…………….. 10
2.1.4 Jitter Specification ..………….……………………………….. 12
2.2 Generic CDR Architecture ....….…………………………….……… 14
2.2.1 CDR Architecture ..….……………………………….………... 15
2.2.2 Full-Rate and Half-Rate CDR Architectures ……....….……… 16
2.2.3 Referencedless and Referenced CDR Architectures ………….. 17
2.3 Clock and Data Recovery Building Blocks …………….…..…….. 20
2.3.1 Phase Detectors ..……………………………………..……….. 20
2.3.2 Frequency Detectors ..……….…………………….….….…… 23
2.3.3 Voltage Controlled Oscillator ...….…..….….….....…............... 25
2.3.4 Proposed CDR Architecture ..…………………………..……. 26
3. CDR CIRCUIT DESIGN .……………………………………..………… 27
3.1 Behavior Model of CDR Blocks …………....…..…………………… 27
3.2 Jitter Generation ..……………………………………………..…..... 31
3.3 Jitter Transfer ..…………….………………..……………………… 32
3.4 Jitter Tolerance …...………..……………..………………………… 33
4. BLOCKS OF DUAL-TRACKING PATH CDR CIRCUIT DESIGN .….. 35
4.1 Phase Detector and Voltage to Current Converter .........…………… 35
4.1.1 General Consideration ...…...………………….……………… 35
4.1.2 PD Circuit Design ..………………………..………………..… 35
4.1.3 Phase Error in the Voltage to Current Converter Circuit …..…. 38
4.2 Voltage Controlled Oscillator ...………………………….…....…… 41
4.3 Loop Filter and Jitter Performance Simulation ..…..…….….……… 46
4.4 Frequency Divider Circuit Design ………...……………..………… 49
4.5 Frequency Detector Circuit Design …..……………………….…… 51
4.6 Lock Detector …..………….………………………………..……… 53
5. IMPLEMENTATION OF THE CDR CIRCUIT ………………..………… 57
5.1 CDR Closed Loop Behavior Simulation Results ....….…..………… 57
5.2 CDR Closed Loop Transistor Level Simulation Results ……….….. 60
5.3 Chip Layout of the Proposed CDR ……….….………….………… 62
5.4 Performance Summary ……………………………….……………. 63
6. CONCLUSION ………………………………………….………………… 65
REFERENCE ………………………………………………….……………….. 67
dc.language.isoen
dc.subject時脈與資料回復電路zh_TW
dc.subjectCDRen
dc.title應用於10GBASE-LX4
時脈與資料回復電路之設計與製作
zh_TW
dc.titleDesign and Implementation of a
Clock and Data Recovery Circuit
for 10GBASE-LX4
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉深淵(Shen-Iuan Liu),林宗賢(Tsung-Hsien Lin),李泰成(Tai-Cheng Lee)
dc.subject.keyword時脈與資料回復電路,zh_TW
dc.subject.keywordCDR,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2005-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
7.85 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved