請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立志(Lih-Jih Wang) | |
| dc.contributor.author | Chao-Ting Chang | en |
| dc.contributor.author | 張朝婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:56:38Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-24 | |
| dc.identifier.citation | 參考文獻
1. 白創文. 2003.,台灣八個森林土壤物理化學性質、黏土礦物與碳同位素定年之硏究。國立臺灣大學農業化學硏究所 2. 林國銓. 1997.,福山闊葉林枯落物及枝葉層之動態變化。台灣林業科學,第12卷,第2期,頁135-144。 3. 林國銓. 1997.,福山闊葉林枯落物及枝葉層之動態變化。台灣林業科學 12(2):135-144。 4. 林國銓. 2002.,枯落物的分解-氣候、枯落物化學組成、土壤生物的交互作用。林業研究專訊 9(2): 3-6. 5. 林世宗. 1998.,棲蘭山闊葉林枯落物及其養分之變動。中華林學季刊 31(2):115-130。 6. 林業試驗所. 1998., 臺灣森林土壤調查報告 (三) 六龜試驗林。林光清等編著。 7. 林業試驗所. 1999., 臺灣森林土壤調查報告 (四) 八仙事業區。林光清等編著。 8. 林業試驗所. 2000., 臺灣森林土壤調查報告 (五) 大安溪事業區 林光淸等編著。 9. 金恒鑣. 2003., 跨試驗林地森林落葉的長期分解(3/3)。行政院國家科學委員會專題研究計畫成果報告。 10. 卓昕岑. 2002., 高海拔塔塔加及低海拔福山森林土壤微生物族群硏究。國立臺灣大學農業化學硏究所. 11. 張峻德、徐正鍾. 1987., 柳杉、杉木林脫落枝葉量及養分含量之季節變化。中華林學季刊 20(4):47-64。 12. 顏江河. 2001. 關刀溪生態系研究,三種林分枯落物產量及分解速率之季節性變化。 13. 洪淑芬. 2003. 腦寮溪天然闊葉林枯落物與林地養分動態之研究. 國立中興大學森林學研究所碩士論文。 14. 陳佳慧. 2000. 關刀溪不同林分枯落物及土壤養分含量之動態變化. 國立中興大學森林學研究所碩士論文。 15. 劉湘瑤. 1994. 南仁山區亞熱帶雨林凋落物量及其養分含量之研究。 國立台灣大學植物學研究所碩士論文。 16. 張華洲. 1997. 惠蓀林場三種林分枯枝落葉量及其養分含量之季節變動。國立中興大學森林學研究所碩士論文。 17. 蘇鴻傑. 1984. 臺灣天然林氣候帶與植群型之研究(二)山地植群帶與溫度梯度之關係. 中華林學季刊 17(4):57-73. 18. 蘇鴻傑. 1985. 臺灣天然林氣候與植群型之研究(三)地利氣候區之劃分.中華林學季刊 18(3):33-44. 19. Ajtay, G.L., Ketner, P., Duvigneaud, P., 1979. Terrestrial primary production and phytomass. Page 129-182 in B. Bolin, E. Degens, E. Kempe, and P. Ketner, editors. The global carbon cycle. SCOPE 13. Wiley, Chichester, England. 20. Alexander, E.B., Mallory, J.I., Colwell, W.L., 1993. Soil –elevation relationships on a volcanic plateau in the southern Cascade Range, Northern California, USA. Catena 20:113-128. 21. Alvarez, R., Lavado, R.S., 1998. Climate, organic matter and clay content relationship in the Pampa and Chaco soils, Agrentina. Geoderma 83:127-141. 22. Banfield, G. E., Bhatti, J. S. 2002. Variability in regional scale estimates of carbon stocks in boreal forest ecosystems: results from West-Central Alberta. Forest Ecology and Management 169(1-2): 15-27. 23. Batjes, N. H. 1996. Total carbon and nitrogen in the soil of the world. European Journal of soil science 47: 151-163. 24. Berry, J., Björkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology. 31:491-543. 25. Berg, B., Ekbohm, G. 1991. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a scots pine forest. IX. Canadian Journal of Botany 69:1449-1456. 26. Berg B., Ekbohm G., Johansson M-B., McClaugherty, C., Rutigliano, F., Virzo De Santo, A. 1996. Maximum decomposition limits of forest litter types- a synthesis. Canadian Journal of Botany 74:659-672. 27. Berg, B., Matzner, E., 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Rev. 5:1-25. 28. Berg, B., Meentemeyer, V., 2002. Litter quality in a north European transect versus carbon stirang potential. Plant and Soil 242:83-92. 29. Berg, B., Staaf, H., 1980. Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. In: Structure and function of northern coniferous forests-- an ecosystem study. Edited by Persson T. Ecological Bulletins (Stockholm) 32: 373-390. 30. Birkland, P.W. 1984. Soils and Geomorphology. Oxfor Univ. Press, New York, NY, USA. 31. Bohm, H. L., McNeal, B. L., O'Connor, G. A. Soil chemistry. New York : Wiley, c2001 32. Bolin, B., 1986. How much CO2 will remain in the atmosphere? The carbon cycle and projections for the future. In Bolin B. Doos BR, Jager J, Warrick RA (eds.) “The Greenhouse Effect, Climatic Change, and Ecosystem.” SCOPE 29, Chichester, UK, pp 93-155. 33. Bowden, R.D., Nadellhoffer, K.J., Boone, R.D., Melillo, J.M., Garrison, J.B., 1993. Contribution of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest.” Canadian Journal of forest research 23:1402-1407. 34. Brady, N.C., Weil, R.R., “The nature and properties of soils.”3rd edition. 35. Burke, I. C., 1989. Control of nitrogen mineralization in a sagebrush steppe landscape: Ecology. 70 1115–1126. 36. Buschiazzo, D.E., Quiroga, A.R., Stahr, K., 1991. Pattern of organic matter accumulation in soil of the Semiarid Argentinian Pampas. Z. Pflanzenernähr Bodenk. 154:437-441. 37. Callesen, I., Liski, J., 2003. Soil carbon stores in Nordic well-drained forest soils - relationships with climate and texture class. Global Change Biology 9(3): 358-370. 38. Campbell, C.A., 1978. Soil organic carbon, nitrogen and fertility. In: Schnitzer, M., Khan, S.U. (Eds.), Soil Organic Matter. Elsevier, Amsterdam, pp. 173±271. 39. Chen, Z.S., Hseu, Z.Y., 1997. Total organic carbon pool in soils of Taiwan. Proceedings of the National Science Council, ROC Part B: Life Science. 21(3): 120-127. 40. Christensen, S. W., 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advan. Soil Sci. 20:1–90. 41. Conant. R.T., Klopatek, J.M., Malin, R.C., Klopatek, C.C., 1998. Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogeochemistry 43: 43-61. 42. Dahlgren, R.A. , Boettinger, J.L., Huntington, G.L., Amundson, R.G., 1997. Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207-236. 43. Dixon, R.K., 1994. Carbon Pools and Flux of Global Forest Ecosystem. Science 263:185-190. 44. Emerson, W. W., Foster, R.C., Oades, J.M., 1986. Organo-mineral complexes in relation to soil aggregation and structure. In “interactions of soil minerals with natural organics and microbes”. Eds. P. M. Huang and M. Schnitzer. p.521-548. Soil Sci. Soc. Am. Special Publ. No. 17. 45. Eswaran, H., Van den Berg, E., Reich, P., 1993. Organic carbon in soils of the world. Soil Science Soceity of American Journal (57):192-194. 46. Fogel, R., Cromack, Jr., K., 1977. Effect of habitat and substrate quality on Douglas-fir litter decomposition in western Oregon. Can. J. Bot. 55: 1632-1640. 47. Fernandez, I. J., Simmons, J. A., 2000. Indices of forest floor nitrogen status along a climate gradient in Maine, USA. Forest Ecology and Management 134(1-3): 177-187. 48. Gallardo, A., Merino, J., 1993. Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74(1): 152-161. 49. Gardner, W.H., 1986. “Water content.” p.493-544. In A. Klute(eds). Methods of soil analysis, Part 1. 2nd. Agron. Monogr. 9. ASA and SSSA, Madison, WI. USA. 50. Garten, C.T. Jr., Post, W.M., Hanson, P.J., Cooper, L.W., 1998. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry 45(2):115-145. 51. Gee, G. W., Bauder, J. W., 1986. “Particle-size Analysis: Core method.” P.383-411. In A.Klute et al.(ed) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 52. Grier, C., Vogt, K., Keyes, M.R., Edmonds, R.L., 1981. Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research 11: 155-167. 53. Hagedorn, F., Maurer, S., Egli, P., Blaser, P., Bucher, J. B., Siegwolf, R., 2001. Carbon sequestration in forest soils: effects of soil type, atmospheric CO2 enrichment, and N deposition. European Journal of Soil Science 52(4):619 54. Harrison, K.G., Broecker W.S., Bonani, G., 1993. The effect of changing land use on soil radiocarbon. Science 262: 725-726 55. Harrison, K.G., 1997. “Using bulk soil radiocarbon measurements to estimate soil organic matter turnover times.” In: Lal R, Kimble J.M, Follett R.F. and Stewart B.A. (Eds) Soil Processes and the Carbon Cycle (pp 549-559). CRC Press, Boca Raton, Florida. 56. Hart, S.C., Firestone, M.K., 1991. Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest. Biogeochemistry 12:73-97. 57. Holford, I.C.R., 1997. Soil Phosphorous Measurement and its Uptake by Plants. Australian Journal of Soil Research, 35: 227-39. 58. Homann, P.S., Sollins, P., Chappell, H.N., Stangenberger, A.G., 1995. Soil organic carbon in a mountainous, forested region: relation to site characteristics. Soil Science Soceity of American Journal 59:1468-1475. 59. Huntington, T.G., Johnson, C.E., Hohnson, A.H., Siccama, T.G., Ryan, D.F., 1989. Carbon, organic matter, and bulk density relationships in a forested spodosol. Soil Science 148(5):380-386. 60. IPCC(Intergovernmental Panel on Climate Change).2001. Climate change. (Houghton, J.T., Jekins, G.J. and Ephraums, J.J., Eds.) Cambridge University Press, Cambridge. 61. Jagnow, G., 1972. Der Einfluss von niederschlag, und hohenlage auf der Humusgehalt ostafrikanischer Bödern. Pflanzenernähr Bodenk. 131:13-21, 62. Jenny, H., 1941. Factors of soil formation, a system of quantitative pedology. McGraw-Hill, New York, New York, USA. 63. Jobbagy, R., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Application 10:423-436. 64. Johansson, M-B, Berg, B., Meentemeyer, V., 1995. Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forest. Long-term decomposition in a scots pine forest. IX. Canadian Journal of Botany 73, 1509-1521. 65. Jones, J. Jr., Vernon, W.C., 1990.”Sampling, handling, and analyzing plant tissue samples.” Soil testing and plant analysis. 3rd ed. SSSA book series. No.3. Madison. WI. 66. Jorgensen, J.R., Wells, C.G., Metz, L.J., 1980. Nutrient changes in decomposing loblolly pine forest floor. Soil Science Soceity of American Journal 44:1307–1314. 67. Kadebra, O., 1978. Organic matter status of some Savanna soils of Colombia, South America. Soil Science 66:173-186. 68. Kavvadias, V.A., Alifragis, D., Tsiontsis, A., Brofas, G., and Stamatelos, G., 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in north Greece. Forest Ecosystem and Management. 144:113-127. 69. Kitayama, K., Aiba, S. I., 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90(1): 37-51. 70. Körner, C., 1989. The nutritional status of plants from high altitudes: Oecologia. 81: 379–391. 71. Liski, J., Westman, C.J., 1997. Carbon storage in forest soil of Finland. 1. Effect of thermoclimate. Biogeochemostry 36:239-260. 72. Lugo, A.E., 1992. Comparison of tropical tree plantations eith secondary forests of similar age. Ecol. Monogr. 62:1-41. 73. Lugo, A.E., S., Brown., 1993. Management of tropical soils as sinks or sources of atmospheric carbon. Plant Soil 149:27-41. 74. Lutz, H.J., Chandler, R.F., 1946. Forest Soils--John Wiley and Sons, N.Y. 514 p. 75. Makipaa, R., Karjalainen, T., Pussinen, A., Kellomaki, S., 1999. Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Canadian Journal of forest Research 29: 1490-1501. 76. Martin J.P., Haider, K., 1986. Influence of mineral colloids on turnover rates of soil organic carbon. In: Huang P.M., Schnitzer M., eds. Interactions of soil minerals with natural organics and microbes. Madison, WI: SSSA Spec. Publ. 17. SSSA, 1986:283-304. 77. McKeague, J.M., Cheshire, M.V., Andreux, F., and Berthelin, J., 1986. Organo-mineral complexes in relation to pedogenesis. In “interactions of soil minerals with natural organics and microbes”. Eds. P. M. Huang and M. Schnitzer. Pp.521-548. Soil Science Soceity of American Journal Special Publ. No. 17. 78. McLean, E.O., 1982. “Soil pH and lime requirement.” P.199-224. In A.L. Page et al.(eds) Methods of soil analysis, Part 2. Chemical and microbioloigical properties. 2nd. Agron. Monogr. 9. ASA amd SSSA, Madison, WI, USA. 79. McGroddy, M., Silver, W. L., 2000. Variations in belowground carbon storage and soil CO2 flux rates along a wet tropical climate gradient. Biotropica 32(4): 614-624. 80. Mendham, D.S., O’Connell, A.M., Grove, T.S., Rance, S.J., 2003. Residuce management effects on soil carbon and nutrient content and growth of second rotation eucalypts. Forest ecosystem management. 181:357-372. 81. Mendoza-Vega, J., Karltun, E., Olsson, M., 2003. Estimation of amounts od soil organic carbon and fine root carbon in land use and land cover calsses, and soil types of Chiapas highlands, Mexico. Forest Ecology and management 177:191-206. 82. Munson, R.D., Nelson, W.L., 1990. “Principle and practices in plant analysis.”In Westerma R.L. (ed). Soil testing and plant analysis. SSSA Book Series NO.3. Madison WI: SSSA. Pp359-387 83. M. van Noordwijk, C., Cerri, P.L., Woomer, K., Nugroho, Bernoux, M., 1997. Soil carbon dynamics in the humid tropical forest zone. Geoderma 79:187-225. 84. Nelson, D.W., Sommers, L.E., 1982. “Total carbon, organic carbon and organic matter.” p.539-580. In A.L. Page et al. (eds) Methods of soil analysis, Part 2. Chemical and microbioloigical properties. 2nd. Agron. Monogr. 9. ASA amd SSSA, Madison, WI, USA. 85. Paul, E.A., Foller, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A., Lyon, D.J., 1997. Radiocarbon dating for determination of soil organic pool sozes and dynamics. Soil Science Soceity of American Journal 61:1058-1067. 86. Post W.M., Emanuel W.R., Zinke, P. J., 1982. Soil carbon pools and world life zone. Nature 298:156-159. 87. Reurslag, A.M., Berg, B., 1993. Rapport över litteraturstudie rörande mängd ochkemisk sammansättning av fallförna samt mängd av organiskt material i skogsmark.Vattenfalls rapportserie No UB 1993/2 110 pp. (English summary). 88. Rodriguez-Murillo, J.C. 2001. Organic carbon content under different types of land use and soil in peninsular Spain. Biology and Fertility of soils 33:53-61. 89. Schlesinger, W.H., 1991. Biogeochemistry: An Analysis of Global Change. Academic Press, New York, NY, USA. 90. Simmons, J. A., Fernandez, I. J., 1996. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. Forest Ecology and Management 84(1-3): 81-95. 91. Sims Z.R., Nielsen G.A. Organic carbon in Montana soils as related to clay content and climate. Soil Science Soceity of American Journal 1986;50:1269-1271. 92. Shaw, D.F., 1930. Potential factors of soil formation. Ecology 11:239-245. 93. Soil Survey Staff. 1984. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Survey Investigations Report No. 1 Soil Cons. Serv,. U.S. Dept. Agr., Washington, D.C. 94. Sombroek, W.G., Nachtregaele, F.O., Hebel, A., 1993. Amounts, dynamics and sequestrations of carbon in tropical and subtropical soils. Ambio 22:417-426. 95. Spain, A.V., 1990. Influence of environment conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Aus. J. Soil. Res. 28:825-839. 96. Stevenson, F. J., 1986. Cycles of soil. John Wiley & Sons. New York. 380 pp. 97. Stromgren, M., Linder, S., Gower, S.T., 1999. Effects of soil warming in a boreal forest. Abisko 15-18 June, 1999. How nutrient cycles constrain carbon balances in boreal forests and arctic tundra. 98. Takeda, H., Torreta, N. K., 1999. Carbon and nitrogen dynamics of decomposing leaf litter in a tropical hill evergreen forest. Eur. J. soil. Biol., 35(2):57-63. 99. Tanner, E. V. J., Vitousek, P. M., 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79(1): 10-22. 100. Thomas, G.W., 1982. ”Cation exchange capacity.” p.149-157. In A.L.Page et al.(ed.) Method of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA. Madison, WI. 101. Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M., 1997. Mineral control of soil organic carbon storage and turnover. Nature (London) 389:170-173. 102. Townsend, A.R., Vitousek, P. M., 1995. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76(3): 721-733. 103. Tremblay, S., Ouimet, R., 2002. Prediction of organic carbon content in upland forest soils of Quebec, Canada. Canadian Journal of Forest Research 32(5): 903-914. 104. Trumbore, S.E., 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applocations 10:399-411. 105. Ulery, A.L., Graham, R.C., Chadwick, O.A., Wood, H.B., 1995. Decade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine. Geoderma 65:121-134. 106. van Wesemael, B. and Veer, M.A.C., 1992. Soil organic matter accumulation, litter decomposition and humus forms in Mediterranean forests of southern Tuscany, Italy; Journal of Soil Science; 43; 133-144. 107. Vitousek, P.M., Turner, D.R., Parton, W.J., Sanford, R.L. Jr., 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models. Ecology, 75, 418-429. 108. Vogt, K.A., Vogt, D.J., Brown, S., Tilley, J.P., Edmonds, R.L., Silver, W.L., Siccama, T.G., 1995. Dynamics of forest floor and soil organic matter accumulation in boreal, temperate, and tropical forest. In: Lal, R., Kimble, J., Levine, E., Stewart, B.A. (Eds), Soil management and Greenhouse Effect. CRC Press and Lewis Publishers, Boca Raton, FL, pp.159-178. 109. Waring, R. H., Schlesinger, W. H., 1985. Forest ecosystem concepts and management. Orlando; Academic Press, INC,p. 181~210. 110. Witkamp, M., 1966. Decomposition of leaf litter in relation to environmental, microflora and microbial respiration. Ecology 47: 194-201. 111. Zinke, P.J., Stangenger, A.G. 2000. Elemental storage of forest soil from local to global scales. Forest Ecology and Management 138:159-165. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36310 | - |
| dc.description.abstract | 本研究在臺灣地區不同海拔及溫量指數共八個天然林採取表層土壤樣品,以瞭解海拔及其他環境因子對土壤養分及碳庫的影響。選取的海拔涵蓋400-3000m,溫量指數由38-208℃,氣候區由熱帶至冷溫帶,土壤樣品深度為0-20cm,並分析枝葉層及礦質土壤的有機碳、氮、主要養分濃度及基礎物化性質等。結果顯示表層土壤的有機碳濃度隨海拔的上升而增高,在櫟林帶上層森林(溫量指數約72-108℃)土壤有機碳濃度達到最高,而在更高海拔的天然林,有機碳濃度又呈下降的趨勢。不同海拔森林表層碳總量亦以櫟林帶最高。枯枝落葉層所儲存的總碳量占森林表層的比重隨氣候帶而不同,熱帶的壽卡枯枝落葉層的占表層碳庫的比重約為3.8%,在亞熱帶的比重大約在7.0-11.0%之間,海拔上升至溫帶森林其枯枝落葉層占森林表層碳庫的比重大幅增加至30%左右,而在冷溫帶森林其比重則稍為降低至26%。各主要養分部分,土壤中的可交換性陽離子在溫量指數變化上沒有明顯的趨勢,其中鉀濃度與鈉濃度在各樣區之間沒有顯著差異,鈣濃度與鎂濃度依照母岩種類的不同稍有差異。相關分析的結果顯示除了溫量指數以外,土壤pH值與氮濃度和臺灣地區森林土壤的有機碳濃度有顯著的相關,推測影響臺灣地區土壤及枝葉層碳庫存的主要因子包括海拔、土壤pH值與氮濃度。 | zh_TW |
| dc.description.abstract | In this research I sampled from 8 forests at different elevation to examine the relationship among climate, vegetation, edaphic conditions and soil carbon stock in Taiwan. The range of elevation covered from 400m to 3000m, and equivalent climates included tropical, subtropical, warm-temperature, temperature and cold temperature. O horizon and soil were sampled to a depth of 20 cm and analyzed for bulk density, clay content, pH, organic carbon, total N, and exchangeable cation capacity. The lowest soil organic carbon concentration occurred at Shoka (390m) , which equivalent climate is tropical , were 3.3% in the upper 5 cm. Concentration of organic carbon reached a maximum (24.0% to 0-5cm depth) in the Anma mountain (2180m) and decreased both higher and lower elevations. Concentration of TN showed a similar trend to that of organic carbon. TN concentration ranged from 0.3% in the Shoka to a maximum of 1.4% in the Bilueh (2200m), with an approximate 4- fold increment. Forest floor carbon stock increased with elevation, from 35.8 ton/ha in tropical forest, 43.1-60.1 ton/ha in subtropical forest, and maximum occurred in temperature forest about 101.1 ton/ha. The ratio of O horizon/floor carbon content differed with climate zontation. The O horizon/floor ratio were about 3.8% in tropic, 7.0-11.0 in subtropics, and increased substantially to about 30% in temperature forest, then decrease slightly in cold-temperature forest to 26%. Soil pH decreased with the elevation and differ about 2 units. Clay content decreased with increasing elevation. Altitudinal trend in CEC were not significant. Exchangeable cation composition followed the trend Ca>Mg>K>>Na at all sites. Concentration of K and Na were not significant different between all sites using Duncan’s test, but concentration of Ca and Mg showed a weak pattern between different parent materials. Base saturation was significant correlated with soil pH. Nutrients of O horizon were mainly governed by parent material and vegetation type, and had no significant relationship with elevation excluding phosphorous. The forest floor carbon stock in Taiwan could be predicted by warmth index (annual mean temperature), soil pH and concentration of soil C and N. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:56:38Z (GMT). No. of bitstreams: 1 ntu-94-R91625045-1.pdf: 3123737 bytes, checksum: 8aab1f91a327db89d4007ee6ffb03aae (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 第一章 前言及研究目的 1 第二章 前人研究 3 一、土壤碳庫的定義 3 二、土壤中的養分與有機碳的關係 4 三、土壤物理性質與有機碳的關係 5 四、森林土壤碳庫存的空間分佈變化 6 五、枯枝落葉層的影響 8 六、台灣相關研究 9 第三章 材料與方法 10 一、研究地點概述 10 二、實驗地環境資料 13 三、樣品之採集與處理 16 四、化學分析 16 (一)枯枝落葉層 16 (二)土壤 17 五、統計分析 20 第四章 結果 22 一、土壤基礎物化性質 22 1.枝葉層生物量與土壤容積密度 22 2.土壤pH值 25 二、枯枝落葉層及土壤的碳濃度變化 28 三、枯枝落葉層及礦質土壤的碳總量變化 31 四、枯枝落葉層及土壤的氮濃度變化 35 五、枯枝落葉層及土壤的氮總量變化 38 六、枯枝落葉層及土壤的碳氮比 40 七、各主要養分差異 42 九、相關性分析 54 第五章 討論 57 一、土壤基礎物化性質的變化 57 二、森林表層碳濃度及總量的變化 59 三、森林表層養分變化 64 結論 66 參考文獻 68 附表 80 附圖 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 養分 | zh_TW |
| dc.subject | 枯枝落葉層 | zh_TW |
| dc.subject | 土壤有機碳 | zh_TW |
| dc.subject | litter layer | en |
| dc.subject | nutrient | en |
| dc.subject | Soil organic matter | en |
| dc.title | 臺灣地區不同海拔之森林土壤碳及養分庫存的研究 | zh_TW |
| dc.title | The Research of forest soil carbon and nutrients stock
at different elevations in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王巧萍(Chiao0Ping Wang) | |
| dc.contributor.oralexamcommittee | 鹿兒陽 | |
| dc.subject.keyword | 土壤有機碳,枯枝落葉層,養分, | zh_TW |
| dc.subject.keyword | Soil organic matter,litter layer,nutrient, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
