Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林中天(Chung-Tien Lin)
dc.contributor.authorHung-Fei Loen
dc.contributor.author駱虹霏zh_TW
dc.date.accessioned2021-06-13T07:56:06Z-
dc.date.available2005-07-27
dc.date.copyright2005-07-27
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citationAicher B, Lerch MM, Muller T, Schilling J, Ullrich A. Cellular redistribution of protein tyrosine phosphatase LAR and PTPs by inducible proteolytic processing. J Cell Biol 138: 681-696, 1997.
Balsamo J, Arregui C, Leung T, Lilien J. The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. J Cell Biol 143: 523-532, 1998.
Balsamo J, Leung T, Ernst H, Zanin MK, Hoffman S, Lilien J. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J Cell Biol 134: 801-813, 1996.
Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatase: Insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27: 133-164, 1998.
Beebe DC, Coats JM. The lens organizes the anterior segment: Specification of neural crest cell differentiation in the avian eye. Dev Biol 220: 424-431, 1999.
Besson A, Robbins SM, Yong VW. PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. Eur J Biochem 263: 605-611, 1999.
Brady-Kalnay SM., Flint AJ, Tonks NK. Homophilic binding of PTP mu, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J Cell Biol 122: 961-972, 1993.
Brady-Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H, Brackenbury R, Rimm DL, Del Vecchio R., Tonks NK. Dynamic interaction of PTP-mu with multiple cadherins in vivo. J Cell Biol 141: 287-296, 1997.
Brady-Kalnay SM, Tonks NK. Protein tyrosine phosphatases as adhesion receptors. Curr Opin Cell Biol 7: 650-657, 1995.
Burden-Gulley SM, Brady-Kalnay SM. PTP-mu regulates N-cadherin-dependent neurite outgrowth. J Cell Bio 144: 1323-1336, 1999.
Chen KH, Azar D, Joyce, NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea 20: 731-737, 2001.
Chen KH, Harris DL, Joyce NC. TGF-beta2 in aqueous humor suppresses S-phase entry in cultured corneal endothelial cells. Invest Ophthalmol Vis Sci 40: 2513-2519, 1999.
Erlich HA, Gelfand ., Sninsky JJ. Recent advances in the polymerase chain reaction. Science 252: 1643-1651, 1991.
Gebbink MF, Zondag GC, Koningstein GM, Feiken E, Wubbolts RW, Moolenaar WH. Cell surface expression of receptor protein tyrosine phosphatase RPTP mu is regulated by cell-cell contact. J Cell Biol 131: 251-260, 1995.
Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E, Flad HD. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 138: 867-873, 1991.
Geroski DH, Edelhauser HF. Quantitation of Na/K ATPase pump sites in the rabbit corneal endothelium. Invest Ophthalmol Vis Sci 25: 1056-1060, 1984.
Gospodarowicz D, Mescher AL, Birdwell CR. Stimulation of corneal .endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. Exp Eye Res 25: 75-89, 1977.
Haj FG., Verveer PJ, Squire A, Neel BG, Bastiaens PI. Imaging sites of
receptor dephosphorylatin by PTP1B on the surface of the endoplasmic reticulum. Science 295: 1708-1711, 2002.
Hellberg B, Burden-Gulley SM, Pietz GE, Brady-Kalnay SM. Expression of the
receptor protein-tyrosine phosphatase, PTPμ, restores E-cadherin-dependent
adhesion in human prostate carcinoma cells. J Biol Chem 277: 11165-11173, 2002.
Iwamoto ., Smelser GK. Electron microscopy of the human corneal endothelium with
reference to transport mechanisms. Invest Opthalmol Vis Sci 72: 270-284, 1965.
Jampel HD, Roche N, Stark WJ, Roberts AB. Transforming growth factor-beta in
human aqueous humor. Curr Eye Res 9: 963-969, 1999.
Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retinal Eye Res 22:
359-389, 2003.
Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal
endothelium: Contact inhibition and TGF-β2. Invest Ophthalmol Vis Sci 43:
60
2152-2159, 2002.
Joyce NC, Harris DL, Zieske JD. Mitotic inhibition of corneal endothelium in
neonatal rats. Invest Ophthalmol Vis Sci 39: 2572-2583, 1998.
Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and
proliferative status in human corneal cells. Invest Ophthalmol Vis Sci 37: 645-655,
1996.
Joyce NC, Meklir B, Neufeld A.H. In vitro pharmacologic separation of corneal
endothelial migration and spreading responses. Invest Ophthalmol Vis Sci 31:
1816-1826, 1990.
Joyce NC, Navon SE, Roy S, Zieske JD. Expression of cell cycle-associated proteins
in human and rabbit corneal endothelium in situ. Invest Ophthalmol Vis Sci 37:
1566-1575, 1996.
Kamiyama K, Iguchi I, Wang X, Kita M, Imanishi J, Yamaguchi N, Hongo M,
Sotozono C, Kinoshita S. Enhancement of growth of rabbit corneal endothelial
cells by PDGF. Cornea 14: 187-195, 1995.
Kaufman HE, Katz JI. Pathology of the corneal endothelium. Invest Ophthalmol Vis
Sci 16: 265-268, 1997.
61
Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K,
Bohmer FD. Phosphotyrosine 1173 mediates binding of the protein-tyrosine
phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of
receptor signaling. J Biol Chem 273: 24839-24846, 1998.
Klarlund JK. Transformation of cells by an inhibitor of phosphatases acting on
phosphotyrosine in proteins. Cell 41: 707-717, 1985.
Kreutziger GO. Lateral membrane morphology and gap junction structure in rabbit
corneal endothelium. Exp Eye Res 23: 285-293, 1976.
Kypta RM, Su H, Reichardt LF. Association between a transmembrane protein
tyrosine phosphatase and the cadherin-catenin complex. J Cell Biol 134: 1519-1529,
1996.
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodger L,
McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler
MH, Parson R. PTEN, a putative protein tyrosine phosphatase gene mutated in human
brain, breast, and prostate cancer. Science 275: 1943-1947, 1997.
Liu F, Sells MA, Chernoff J. Protein tyrosine phosphatase 1B negatively regulates
integrin signaling. Curr Biol 8: 173-176, 1998.
Machama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the
lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:
13375-13378, 1998.
Marrero MB, Venema VJ, Ju H, Eaton DC, Venema RC. Regulation of angiotensin
II-induced JAK2 tyrosine phosphorylation: role of SHP-1 and SHP-2. Am J Physiol.
275: 1216-1223, 1998.
Maurice DM. The location of the fluid pump in the cornea. J Physiol 221: 43-54,
1972.
Myers MP, Pass I, Batty IH. The lipid phosphatase activity of PTEN is critical for its
tumor suppressor function. Proc Natl Acad Sci USA 95: 13513-13518, 1998.
Pallen CJ, Tong PH. Elevation of membrane tyrosine phosphatase activity in
density-dependent growth-arrested fibroblasts. Proc Natl Acad Sci USA 88:
6996-7000, 1991.
Paramio JM, Navarro M, Segrelles C, Gomez-Casero E, Jorcano JL. PTEN tumour
suppressor is linked to the cell cycle control through the retinoblastoma protein.
Oncogene 18: 7462-7468, 1999.
Pathre P, Arregui C, Wampler T, Kue I, Leung TC, Lilien J, Balsamo J. PTP1B
regulates neurite extension mediated by cell-cell and cell-matrix adhesion
molecules. J Neurosci Res 63: 143-150, 2001.
Petroll WM, Hsu JK, Bean J, Cavanagh HD, Jester JV. The spatial organization of
apical junctional complex-associated proteins in feline and human corneal
endothelium. Curr Eye Res 18: 10-19, 1999.
Petrone A, Sap J. Emerging issues in receptor protein tyrosine phosphatase function;
lifting fog or simple shifting? J Cell Sci 113: 2345-2354, 2001.
Qi JH, Ito N, Claesson-Welsh L. Tyrosine phosphatase SHP-2 is involved in
regulation of platelet-derived growth factor-induced migration. J Biol Chem 274:
14455-14463, 1999.
Qu CK, Yu WM, Azzarelli B, Feng GS. Genetic evidence that SHP-2 tyrosine
phosphatase is a signal enhancer of the epidermal growth factor receptor in
mammals. Proc Natl Acad Sci USA 96: 8528-8533, 1999.
Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR.
Regulation of G1 progression by the PTEN tumor suppressor protein is linked to
inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci
USA 96: 2110-2115, 1999.
Rhee J, Lilien J, Balsamo J. Essential tyrosine residues for interaction of the
non-receptor protein-tyrosine phosphatase PTP1B with N-cadherin. J Biol Chem
276: 6640-6644, 2001.
Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young
donors. Invest Ophtalmol Vis Sci 41: 660-667, 2000.
Senoo T, Obara Y, Joyce NC. EDTA: a promoter of proliferation in human corneal
endothelium. Invest Ophthalmol Vis Sci 41: 2930-2935, 2000.
Sherrard ES. The corneal endothelium in vivo: its response to mild trauma. Exp Eye
Res 22: 347-357, 1976.
Siliciano JD, Goodenough DA. Localization of the tight junction protein, ZO-1, is
modulated by extracellular calcium and cell–cell contact in Madin–Darby canine
kidney epithelial cells. J Cell Biol 107: 2389-2399, 1988.
Sorby M, Ostman A. Protein-tyrosine phosphatase-mediated decrease of epidermal
growth factor and platelet-derived growth factor receptor tyrosine phosphorylation
in high cell density cultures. J Biol Chem 271: 10963-10966, 1996.
Starborg M, Gell K, Brundell E, Hoog C. The murine Ki-67 cell proliferation antigen
accumulates in the nucleolar and heterochromatic regions of interphase cells and at
the periphery of the mitotic chromosomes in a process essential for cell cycle
progression. J Cell Sci 109: 143-153, 1996.
Stern ME, Edelhauser HF, Pederson HJ, Staatz WD. Effects of ionophores X537a and
A23187 and calcium-free medium on corneal endothelial morphology. Invest
Ophthalmol Vis Sci 20: 497-508, 1981.
Suzuki E, Nagata D, Yoshizumi M, Kakoki M, Goto A, Omata M, Hirata Y. Reentry
into the cell cycle of contact-inhibited vascular endothelial cells by a phosphatase
inhibitor. J Biol Chem 275: 3637-3644, 2000.
Takahashi K, Suzuki K. Density-dependent inhibition of growth involved prevention
of EGF receptor activation by E-cadherin-mediated cell-cell adhesion. Exp Cell Res
226: 214-222, 1996.
Tsukita S, Oishi K, Akiyama T, Yamanashi Y, Yamamoto T, Tsukita S. Specific
proto-oncogenic tyrosine kinases of src family are enriched in cell-to-cell adherens
junctions where the level of tyrosine phosphorylation is elevated. J Cell Biol 113:
867-79, 1991.
Van Setten GB, Fagerholm P, Philipson B, Schultz G. Growth factors and their
receptors in the anterior chamber. Absence of epidermal growth factor and
transforming growth factor alpha in human aqueous humor. Ophthalmic Res 28:
361-364, 1996.
Wilson SE, Lloyd SA, He YG, McCash CS. Extended life of human corneal
endothelial cells transfected with the SV40 large T antigen. Invest. Ophthalmol Vis
Sci 34: 2112-2123, 1993.
Wilson SE, Weng J, Blair S, He YG, Lloyd S. Expression of E6/E7 or SV40 large T
antigen-coding oncogenes in human corneal endothelial cells indicates regulated
high-proliferative capacity. Invest Ophthalmol Vis Sci 36: 32-40, 1995.
Xu G, Arregui C, Lilien J, Balsamo J. PTP1B modulates the association of
beta-catenin with N-cadherin through binding to an adjacent and partially
overlapping target site. J Biol Chem 277: 49989-49997, 2002.
Young BA, Sui X, Kiser TD, Hyun SW, Wang P, Sakarya S, Angelini DJ, Schaphorst
KL, Hasday JD, Cross AS, Romer LH, Passaniti A, Goldblum SE. Protein tyrosine
phosphatase activity regulates endothelial cell-cell interactions, the paracellular
pathway, and capillary tube stability. Am J Physiol Lung Cell Mol Physiol 285:
63-75, 2003.
Yu Z, Su L, Hoglinger O, Jaramillo ML, Banville D, Shen SH. SHP-1 associates with
both platelet-derived growth-factor receptor and the p85 subunit of
phosphatidylinositol 3-kinase. J Biol Chem 273: 3687-3694, 1998.
Zhu CC, Joyce NC. Proliferative response of corneal endothelial cells from young and
older donors. Invest Ophthalmol Vis Sci 45: 1743-1751, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36292-
dc.description.abstract蛋白質酪胺酸磷酸化之訊息傳遞在許多不同種類的細胞中,已被證實在細胞增生、細胞與細胞間的接合、細胞移動和細胞骨骼的構成中,扮演著極為重要的角色,但目前僅有非常有限的研究著重於此一訊息傳遞對角膜內皮細胞的影響。本篇研究的目的為想要了解酪胺酸磷酸化之訊息傳遞在角膜內皮細胞與細胞之間接合所扮演之調控角色。我們推測酪胺酸磷酸酶 (PTP)在角膜內皮細胞與細胞間的接合扮演著極重要的角色,一旦使用酪胺酸磷酸酶的抑制劑 (PTP inhibitor)來抑制其功能,就會使細胞與細胞間的接合瓦解,並誘發許多下游的反應使得細胞進行分裂和改變其通透性。實驗材料為初代培養之牛角膜內皮細胞和全厚度之兔子眼角膜,使用sodium orthovanadate (SOV)作為酪胺酸磷酸脢的抑制劑,接著以不同SOV濃度 (25, 50, 100μM)及不同時間 (8, 24 hrs)來處理初代培養之細胞與新鮮的兔子眼角膜,之後進行螢光染色並使用螢光顯微鏡及共軛焦顯微鏡進行影像擷取,以觀察位於細胞與細胞間的蛋白質,例如:N-cadherin, alpha-catenin 和p120的改變,另外也使用Ki67抗體來偵測是否有進入cell cycle的細胞。細胞間接合蛋白質和一些cell cycle的調節蛋白質 (例如:Cyclin A, Cyclin E, Cyclin D1和PCNA)的表現量則利用西方墨點法 (Western blotting)來定量。實驗結果顯示酪胺酸磷酸脢的抑制劑 (PTP inhibitor)會改變角膜內皮細胞的細胞形態、打斷原本細胞與細胞間的緊密接合,也會使原本一直停留在G1 phase早期的細胞重新進入細胞週期 (cell cycle);但是本實驗中所選定的若干細胞間接合蛋白質和cell cycle的調節蛋白質其表現量卻沒有改變。未來的研究期望能更瞭解磷酸化之訊息傳遞如何影響角膜內皮細胞特性的機制。zh_TW
dc.description.abstractThe importance of phosphotyrosine signal transduction in cellular proliferation, cell-cell contact and cellular migration has been proved in various cell types. However, only limited studies have been reported on corneal endothelial cell cells. In this study, we aim to understand the role of phosphotyrosine signaling in corneal endothelial cellular function. We propose that protein tyrosine phosphotase (PTP) may play an important role in cell-cell junction of corneal endothelial cells, and the disruption of its function by PTP inhibitor can break through cell-cell junction, and trigger a lot of downstream actions such as cellular proliferation and change of permeability. Primary culture of bovine corneal endothelial cells and whole rabbit corneas were used as the experimental materials. We first treated the cultured bovine corneal endothelial cells with PTPs inhibitor, sodium orthovanadate (SOV), with a variety of concentrations (25,50,100μM) for various durations (8,24 hrs). The effects of PTP inhibition on cellular distribution of cell-cell junctional proteins, such as N-cadherin, alpha-catenin and p120, were evaluated by immunohistochemical staining with fluorescein microscopy and confocal microscopy. Immunohistochemical staining with Ki67 Ab, a marker of cell proliferation, was also used to detect cells entering cell cycle. The expression levels of these cellular junctional proteins and regulatory proteins in cell cycle regulation such as Cyclin A, Cyclin E, Cyclin D1 and PCNA, were quantified by Western blotting. Our results demonstrate that PTPs inhibitor broke through cell-cell junction, and triggered corneal endothelial cells to re-enter cell cycle instead of having no impacts on celluar proliferation. However, the expression levels of those chosen cell-cell junction proteins and chosen regulatory proteins in cell cycle regulation were unchanged. Further studies will be carried out to elucidate the mechanism of phosphotyrosine signaling in mediating the cellular behavior of corneal endothelial cells.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:56:06Z (GMT). No. of bitstreams: 1
ntu-94-R91629027-1.pdf: 3260463 bytes, checksum: 4b0902f4c7f956b44df7ac625c1fd25e (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents摘要……………………………………………………………….…….…1
Abstract…………………………………………………………………..3
第一章 序言……………………………………………..……….…4
第二章 文獻探討
第一節 角膜內皮細胞與其生理功能之簡介………………………8
第二節 細胞接合 (cell-cell junctions)與細胞間接合蛋白質 (junctional protein)之簡介……………………………11
I. Tight junctions (TJs)………………………………….12
II. Adherens junctions (AJs)………………………………12
第三節 酪胺酸磷酸化之訊息傳遞 (phosphotyrosine signal
transduction)對細胞生理之重要性………………………15
第四節 細胞生長循環 (cell cycle)調控系統之簡介…………...17
第五節 接觸抑制(contact inhibition)與角膜內皮細胞
分裂的相關實驗之文獻探討……………………….………19
第三章 實驗材料與方法
第一節 牛角膜內皮細胞之初代培養………………………………..22
第二節 Junctional protein 於細胞內之表現分析
I. 細胞免疫化學染色 (Immunocytochemistry)……………..23
II. 組織免疫螢光染色 (Immunofluorescence)………………23
III. 西方墨點法 (Western blotting)…………………………24
第三節 Sodium orthovanadate (SOV)之製備與使用……………....27
第四章 實驗結果
第一節 接合蛋白質細胞免疫化學染色於培養之牛角膜內皮細
胞之表現……………………………………………………..29
第二節 接合蛋白質 (junctional protein)之表現分析…………36
第三節 Ki-67於培養之牛角膜內皮細胞之表現……………………39
第四節 細胞生長循環相關蛋白質 (regulatory proteins in
cell cycle regulation)之表現分析………………………43
第五節 接合蛋白質p120組織免疫化學染色於新鮮之兔眼角膜
內皮細胞之表現…………………………………….………..45
第五章 討論
一. 人類角膜內皮細胞在體內無法分裂的原因...………...…………48
二. 角膜細胞培養與組織培養之使用與比較…………………..51
三. PTPs inhibitor 對細胞間接合蛋白質 (junctional protein)之影響…………………………………………….52
四. PTPs inhibitor對內皮細胞分裂之影響…………………53
五. 本實驗之限制……………………………………………….54
六. 未來實驗方向及其臨床應用性…………………………….55
第六章 參考文獻………………………………………….………..56
dc.language.isozh-TW
dc.subject磷酸化zh_TW
dc.subject角膜zh_TW
dc.subject酪胺酸磷酸化zh_TW
dc.subject內皮細胞zh_TW
dc.subject訊息傳遞zh_TW
dc.subjectPTPsen
dc.subjectsignal transductionen
dc.subjectcorneaen
dc.subjectphosphotyrosineen
dc.subjectendotheliumen
dc.title酪胺酸磷酸化之訊息傳遞在角膜內皮細胞扮演之調控角色zh_TW
dc.titlePhosphotyrosine Signaling as a Regulator of
Corneal Endothelial Cell Function
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor陳偉勵(Wei-Li Chen)
dc.contributor.oralexamcommittee劉振軒
dc.subject.keyword角膜,酪胺酸磷酸化,內皮細胞,訊息傳遞,磷酸化,zh_TW
dc.subject.keywordcornea,PTPs,endothelium,signal transduction,phosphotyrosine,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved