Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭克聲(Ke-Sheng Cheng)
dc.contributor.authorYing-Syuan Chenen
dc.contributor.author陳映璇zh_TW
dc.date.accessioned2021-06-13T07:55:52Z-
dc.date.available2011-08-11
dc.date.copyright2011-08-11
dc.date.issued2011
dc.date.submitted2011-07-21
dc.identifier.citation1. 朱文泉、潘耀忠、何浩、于德永、扈海波,(2006)中國典型植被最大光利用率模擬。科學通報,51(6),P700~706.
2. 姚銘輝、陳守泓,(2005)水稻田二氧化碳吸存量之研究。台灣農業研究,54:150~161.
3. Casanova, D., Epema, G. F., Goudriaan, J., 1998. Monitoring rice reflectance at field level for estimating biomass and LAI [J]. Field Crop Research, 55:83-92.
4. Dawson, T. P., North, P. R. J., Plummer, S. E., 2003. Forest ecosystem chlorophyll content : Implications for remotely sensed estimates of net primary productivity [J] . International Journal of Remote Sensing, 24(3), 611-617.
5. Desjardins, R. L. and Lemon, E. R., 1974. Limitation in the eddy covariance technique for determination of the carbon dioxide and sensible heat flux. Boundary-Layer Meteorol, 5:475-488.
6. Emmerich, W. E., 2003. Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agric. For. Meteorol, 116:91-102.
7. Fensholt, R., Sandholt, I., Rasmussen, M. S., 2004. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91: 490~507.
8. Field, C. B., Randerson, J. T., Malmstrom, C. M., 1995. Global net primary production: Combining ecology and remote sensing. Remote Sensing of Environment, 51: 74~88.
9. Frank, A. B., 2002. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains. Environ. Pollut, 116:397-403.
10. Fung, I., Tucker, C. J., Prentice, K., 1987. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res, 92(D3): 2999–3015.
11. Gamon, J. A., Rahman, A. F., Dungan, J. L., Schildhauer, M. Huemmrich, K. F., 2006b. Spectral Network (SpecNet): what is it and why do we need it? Remote Sensing of Environment, 103: 227-235.
12. Gobron, N., Pinty, B., Taberner, T., Melin, F., Verstraete, M. M., Widlowski, J. –L., 2006. Monitoring the photosynthetic activity of vegetation from remote sensing data. Advances in Space Research, 38: 2196~2202.
13. Gobron, N., Taberner, M., 2008. Landsat 7 Enhanced Thematic Mapper JRC-
FAPAR Algorithm Theoretical Basis Document, EUR No. 23554 EN.
14. Goward, S. N., Tucker, C. J., Dye, D. G.., 1985. North American vegetation patterns observed with the NOAA-7 Advanced Very High Resolution Radiometer. Vegetation, 64:3–14.
15. Gower, S. T., Vogt, K. A., and Grier, C. C., 1992. Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecol. Monogr, 62:43–65.
16. Gower, S. T., Kucharik, C. J., and Norman, J. M., 1999. Direct and indirect estimation of leaf area index, FAPAR and net primary production of terrestrial ecosystems. Remote Sens. Environ, 70:29–51.
17. Grier, C. C., 1988. Foliage loss due to snow, wind, and winter drying damage: its effects on leaf biomass of some western conifer forests. Can. J. For. Res, 18:1097–1102.
18. Ham, J. M. and J. L. Heilman., 2003. Experimental test of density and energy-
balance corrections on carbon dioxide flux as measured using open-path eddy covariance. Agron, J. 95:1393-1403.
19. Kergoat, L., 1999. A model for hydrologic equilibrium of leaf area index on a global scale. Journal of Hydrology, 212–213, 267 286.
20. Keyes, M. R., and Grier, C. C., 1981. Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can. J. For. Res, 11:599–605.
21. Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J., & Running S. W., 1998b. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research, D: Atmospheres, 103, 32257– 32275.
22. Lieth, H. F. H., 1972. Modeling the Primary productivity of the world. Neture and Resources, 8(2), P5-10.
23. Linder, S., Benson, M. L., Meyers, B. J., and Raison, R. J., 1987. Canopy dynamics and growth of Pinus radiata. I. Effects of irrigation and fertilization during a drought. Can. J. For. Res, 17:1157–1165.
24. Los, S. O., Justice, C. O., Tucker, C. J., 1994. A global 1°by 1°NDVI dataset for climate studies derived from the GIMMS continental NDVI data. International Journal of Remote Sensing, 15: 3493~3518.
25. Montieth, J. L., 1972. Solar radiation and production in tropical ecosystems. J. Appl. Ecol, 9:747–766.
26. Myneni, R. B., & Williams, D. L., 1994. On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 49, 200– 211.
27. Myneni, R. B., Nemani, R. R., & Running, S. W., 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer model. IEEE Transactions on Geoscience and Remote Sensing, 35, 1380– 1393.
28. Myneni, R. B., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y.,Wang, Y., Hoffman, S., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R., & Running, S. W., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83, 214– 231.
29. Parton, W. J. , Scurlock, J. M. O., Ojima, D. S., 1993. Observations and Modeling of Biomass and S oil Organic Matter Dynamics for the Grassland Biome Worldwide [J ] . Global Biogeochemical Cycles , 7 :785—890.
30. Potter, C. S., Randerson, J. T., Field, C. B., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biochemical Cycle, 7: 811~841.
31. Raymond, E., Hunt, J. R., 1994. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. International Journal of Remote Sensing, 15: 1725~1730.
32. Rahman, H., Pinty, B., Verstraete, M.M., 1993. Coupled surface-atmosphere reflectance CSAR model. Part 2: semi-empirical surface model usable with NOAA advanced very high resolution radiometer data. Journal of Geophysical Research 98, 20791–20801.
33. Ruimy, A., and Saugier, B., 1994. Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 97, P18518-18521.
34. Running, S. W., Nemani, R. R., 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ, 24:347–367.
35. Running, S. W., and Hunt, E. R., 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In Scaling Physiological Processes: Leaf to Globe (J. R. Ehleringer, and C. B. Field, Eds.), Academic, San Diego, CA, pp. 141–158.
36. Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P.S., Hibbard, K. A., 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ, 70:108–128.
37. Steele, S. J., Gower, S. T., Vogel, J., and Norman, J. M., 1997. Root mass, production and turnover of boreal aspen, jack pine and black spruce forests. Tree Physiol, 17:577–587.
38. Tucker, C. J., Fung, I., Keeling, C., Gammon, R., 1986. Relationship between atmospheric CO2 variations and satellite-derived vegetation index. Nature 319:195–199.
39. Uchijima, Z., Seino, H. Agro., 1985. Evaluation of Net Primary Productivity of Natural Vegtation(1) :Chikug o Model for Evaluating Productivity [J ] . Journal o f Agricultural Meteorology , 40 : 343-353.
40. Vogt, K. A., and Persson, H., 1991. Measuring growth and de-velopment of roots. In Techniques and Approaches in Forest Tree Ecophysiology (J. P. Lassoie and T. M. Hinckley, Eds.), CRC Press, Boca Raton, FL, pp 477-501.
41. Warnant, P., L. Francois, D. Strivay, and J.-C. Gerard., 1994. CARAIB: A global model of terrestrial biological productivity, Global Biogeochem. Cycles, 8(3), 255–270, doi:10.1029/94, GB00850.
42. Wenze, Y., Dong, H., Bin, T., Stroeve, J. C., Shabanov, N. V., Knyazikhin, Y., Nemani, R. R., Myneni, R. B., 2006. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products From the Terra MODIS Sensor: 2000–
2005. IEEE Transactions on Geoscience and Remote Sensing, VOL. 44, NO. 7
43. Wiegand, C. T., Maas, S. J., Aase, J. K., 1992. Multisite analyses of spectral-biophysical data for wheat [J]. Remote Sensing of Environment, 42:1-21.
44. Zhao, M., Running, S. W., Heinsh, F. A., Nemani, R. R., 2006b. Variations of global terrestrial primary production observed by Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36284-
dc.description.abstract本研究透過現地量測與Landsat-7ETM+衛星影像兩種尺度偵測水稻田之植生參數於水稻生長期間變化,並探討植生參數與二氧化碳通量之間的相關性。
本研究方法使用Gobron(2006)提出的大氣修正法估算植生冠層入射光合有效輻射吸收率(FAPAR),並使用Monteith(1972)提出的光能利用率模式估算淨初級生產量(NPP),最後探討常態化差異植生指標(NDVI)、FAPAR、NPP與渦流相關法(Eddy covariance method)估算求得二氧化碳通量之相關性。衛星影像選擇空間解析度30公尺的美國大地衛星(Landsat-7ETM+),空間尺度較接近研究區域,將同樣的計算方式應用在衛星影像,最後將現地實驗估算結果與衛星影像估算結果相互驗證。
研究結果顯示,現地估算結果皆有落在衛星影像估算結果之範圍內,代表兩者估算結果一致,另外經由NDVI、FAPAR、NPP與二氧化碳通量變化趨勢圖中,可看出NPP相較於NDVI與FAPAR,也更能偵測出與二氧化碳通量的線性反比變化趨勢,驗證Zhao(2006b)所提出NPP與二氧化碳通量存在良好負相關之論點。
zh_TW
dc.description.abstractThe major purpose of this study is to use field measurements and Landsat-7ETM satellite images to detect the two-scale paddy field parameters in the vegetative growth
period of rice, and to investigate the relationships between the vegetation indices and the carbon dioxide fluxes.
In this study, FAPAR was estimated using an algorithm developed by Gobron (2005) , and the Monteith light use efficiency model was used to estimate NPP.
Empirical relationships between NDVI, FAPAR, NPP and CO2 flux were established. It was found that NPP is more sensitive than NDVI and FAPAR. Such results are consistent with Zhao (2006b) that NPP is the primary driver of the atmospheric CO2 growth rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:55:52Z (GMT). No. of bitstreams: 1
ntu-100-R98622014-1.pdf: 7565898 bytes, checksum: 151877fbe850c3c9ab58e0f0536b8409 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要.................................................................................................................................Ⅰ
Abstract...........................................................................................................................Ⅱ
目錄................................................................................................................................Ⅲ
圖目錄............................................................................................................................Ⅴ
表目錄............................................................................................................................Ⅶ
第一章 序論....................................................................................................................1
1.1 研究動機與目的.....................................................................................................1
1.2 研究流程與架構.....................................................................................................2
第二章 文獻回顧............................................................................................................4
2.1 遙測技術應用於植生健康狀態之探討.................................................................4
2.2 葉面積指數(LAI)................................................................................................... 5
2.3 常態化差異植生指標(NDVI) ................................................................................6
2.4 植生冠層入射光合有效輻射吸收率(FAPAR).......................................................7
2.5 淨初級生產量(NPP)..............................................................................................11
2.6 二氧化碳通量(FCO2).......................................................................................... .17
第三章 研究方法...........................................................................................................22
3.1 植生冠層入射光合有效輻射吸收率(FAPAR)估算.............................................22
3.1.1 大氣修正演算法.....................................................................................22
3.1.2 替代演算法.............................................................................................30
3.2 淨初級生產量(NPP)估算......................................................................................32
3.3 衛星影像估算植生參數........................................................................................33
第四章 研究區域與資料...............................................................................................36
4.1 研究區域概述........................................................................................................36
4.2 美國大地衛星(Landsat)簡介.................................................................................38
4.3 衛星影像挑選........................................................................................................40
4.4 實驗儀器概述........................................................................................................40
第五章 結果與討論.......................................................................................................44
5.1 現地量測結果........................................................................................................44
5.1.1 植生冠層入射光合有效輻射吸收率(FAPAR)......................................52
5.1.2 二氧化碳通量.........................................................................................55
5.2 衛星影像推估結果................................................................................................62
5.2.1 常態化差異植生指標(NDVI)...............................................................62
5.2.2 植生冠層入射光合有效輻射吸收率(FAPAR).....................................63
5.2.3 淨初級生產量(NPP)..............................................................................63
5.2.4 衛星影像推估結果驗證........................................................................68
第六章 結論與建議......................................................................................................70
6.1 結論.......................................................................................................................70
6.2 建議.......................................................................................................................71
參考文獻........................................................................................................................72
附錄:符號表................................................................................................................77
dc.language.isozh-TW
dc.subject淨初級生產量zh_TW
dc.subject植生冠層入射光合有效輻射吸收率zh_TW
dc.subject常態化差異植生指標zh_TW
dc.subject二氧化碳通量zh_TW
dc.subjectLandsat-7ETM+zh_TW
dc.subject遙感探測.zh_TW
dc.subjectLandsat-7ETM+en
dc.subjectRemote sensing.en
dc.subjectCO2 fluxen
dc.subjectnet primary production (NPP)en
dc.subjectFraction of Absorbed Photosynthetically Active Radiation (FAPAR)en
dc.subjectNormalized Difference Vegetation Index (NDVI)en
dc.title應用衛星影像估算水稻田之植生參數與二氧化碳通量zh_TW
dc.titleEstimating Vegetation Indices and Carbon Dioxide Flux in Paddy Field Using Remote Sensing Imagesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor謝正義(Cheng-I Hsieh)
dc.contributor.oralexamcommittee黃文政(Wen-Cheng Huang)
dc.subject.keyword常態化差異植生指標,植生冠層入射光合有效輻射吸收率,淨初級生產量,二氧化碳通量,Landsat-7ETM+,遙感探測.,zh_TW
dc.subject.keywordNormalized Difference Vegetation Index (NDVI),Fraction of Absorbed Photosynthetically Active Radiation (FAPAR),net primary production (NPP),CO2 flux,Landsat-7ETM+,Remote sensing.,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2011-07-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
7.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved