Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36267
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李後晶
dc.contributor.authorTing-Hsuan Changen
dc.contributor.author張鼎鉉zh_TW
dc.date.accessioned2021-06-13T07:55:24Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citationBear, M. F., B. W. Connors, and M. A. Paradiso. 2001. Neuroscience: Exploring the brain. Lippincott Williams and Wilkins. Maryland. 855 pp.
Bell, W. J. and E. Kramer. 1979. Search and anemotactic orientation of cockroaches. J. Insect Physiol. 25: 631-640.
Black, G., M. Geusz, S. Khalsa, S. Michel, and D. Whitmore. 1995. Cellular analysis of a molluscan retinal biological clock. Ciba. Found. Symp. 183: 51-60.
Brady, J. 1982. Biological timekeeping. Cambridge Univ. Press, London. 193 pp.
Chang, H. W., and H. J. Lee. 2001. Inconsistency in the expression of locomotor and ERG circadian rhythms in the German cockroach, Blattela germanica (L.). Arch. Insect Biochem. Physiol. 48: 155-166.
Cochran, D. G. 1983. Food and water consumption during the reproductive cycles of female German cockroaches. Entomol. Exp. Appl. 34: 51-57.
Coleman, R. M. 1986. Circadian rhythms of physiological functions pp. 627-628 In: Bear M. F., B. W. Connors, and M. A. Paradiso. (eds.) Neuroscience: Exploring the brain. Lippincott Williams and Wilkins.
Colwell, S. C., and T. L. Page. 1990. A circadian rhythm in neural activity can be recorded from the central nervous system of the cockroach. J. Comp. Physiol. A. 166: 643-649.
Demark, J. J. and G. W. Bennett. 1995. Adult German cockroach (Dictyoptera: Blattellidae) movement patterns and resource consumption in a laboratory arena. J. Med. Entomol. 32: 241-248.
Dement, W. C. 1976. Circadian rhythms of sleep and wakefulness. pp. 628-629. In: Bear M. F., B. W. Connors, and M. A. Paradiso. (eds.) Neuroscience: Exploring the brain. Lippincott Williams and Wilkins.
Dreisig, H., and E. T. Nielsen. 1971. Circadian rhythm of locomotion and its temperature dependence in Blattella germanica. J. Exp. Biol. 54: 187-198.
Ewer, J., B. Frisch, M. J. Hamblen-Coyle, M. Rosbash, and J.C. Hall. 1992. Expression of the period clock gene within different cell types of the brain of Drosophila adults and mosaic analysis of these cells influences on circadian behavioral rhythms. J. Neurosci. 12: 3321-3349.
Frisch, B., P. E. Hardin, M. J. Hamblen-Coyle, M. Rosbash, and J.C. Hall. 1994. A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron. 12: 555-570.
Gemeno, C., W. S. Leal, K. Mori, and C. Schal. 2003. Behavioral and electrophysiological responses of the brownbanded cockroach, Supella longipalpa, to stereoisomers of its sex pheromone, supellapyrone. J. Chem. Ecol. 29: 1797-1811.
Hall, J. C. 1996. Are cycling gene products an internal zeitgebers no longer the zeitgeist of chronobiology? Neuron. 17: 799-802.
Handler, A. M., and R. J. Konopka. 1979. Transplantation of a circadian pacemaker in Drosophila. Nature (Lond). 279:236-238.
Hawkins, W., and M. Rust. 1977. Factors influencing male sexual response in the American cockroach Periplaneta America. J Chem. Ecol. 3: 85-99.
Helfrich-Forster, C. 1995. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 92:612-616.
Helfrich-Forster, C., M. Stengl, and U. Homberg. 1998. Organization of the circadian system in insects. Chrono. Inter. 15(6): 567-594
Jackson, F. R., X. Zhang, and G.P. McNeil. 1998. Oscillating molecules and circadian clock output mechanisms. Mol. Psych. 3: 381-385.
Koehler, W. K. and G. Fleissner. 1978. Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects. Nature 174: 708-710.
Konopka, R. J. and S. Benzer. 1971. Clock mutants in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 2112-2116.
Leppla, N. C., P. G. Koehler and H. R. Agee. 1989. Circadian rhythms of German cockroach (Dictyoptera: Blattellidae): locomotion in response to different photoperiods and wavelengths of light. J. Insect Physiol. 35: 63-66.
Levine, J. D., P. Funes, H. B. Dowse, and J. C. Hall. 2002. Signal analysis of behavioral and molecular cycles. BMC. Neuroscience. 3: 1-25.
Lin, T. M., and H. J. Lee. 1996. The expression of locomotor circadian rhythm in female German cockroach, Blatella germanica (L.). Chronobiol. Int. 13: 81-91.
Linn, C., M. Campbell, K. Poole, W. Wu, and W. Roelofs. 1996. Effects of photoperiod on the circadian timing of pheromone response in male Tricoplusia ni: Relationship to the modulatory action of octopamine. J. Insect Phisol. 42: 881-891.
Michel, S., M. E. Geusz, J. J. Zaritsky, and G. D. Block. 1993. Circadian rhythm in membrane conductance expressed in isolated neurons. Science (Wash). 259: 239-241.
Miller, T. A. 1979. Insect neurophysiology techniques. Springer, New York. 19-20.
Nitz, A. D., G. Tononi, and R. J. Greenspan. 2002. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12: 1934-1940.
Owens, J. M. and G. W. Bennett. 1983. Comparative study of German cockroach population sampling techniques. Environ. Entomol. 12: 1040-1046.
Page, T. L., and E. Koelling. 2003. Circadian rhythm in olfactory response in the antennae controlled by the optic lobe in the cockroach. J. Insect Phisol. 49: 697-707.
Park, K. C. and Hardie, J. 1998. An improved aphid electroantennogram. J. Insect Physiol. 44: 919-928.
Payne, T., H. Shorey, and L. Gaston. 1970. Sex pheromones of noctuid moths: Factor influencing antennal responsiveness in males of Tichoplusia ni. J. Insect Phisol. 16:1043-1055.
Pennartz, C. M., M. A. Bierlaagh, and A. M. Geurtsen. 1977. Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. J. Neurophys. 78: 1811-1825.
Renn, S. C. P., J. H. Park, M. Rosbash, J. C. Hall, and P. H. Taghert. 1999. A pdf neuropeptide gene mutation and ablation of PDF neurons both cause severe abnormalities of circadian behavioral rhythms in Drosophila. Cell. 99: 791-802.
Riddiford, L. M., R. S. Hewes, and J. W. Turman. 1994. Dynamics and metamorphosis of an identifiable peptidergic neuron in an insect. J. Neurobiol. 25: 819-830.
Sassone-Corsl, P. 1998. Molecular clocks: mastering time by regulation. Neuron 17: 871-874.
Schneider, D. 1957. Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13: 89-91.
Silverman, J. 1986. Adult German cockroach (Orthoptera: Blattellidae) feeding and drinking behavior as a function of density and harborage-to-resource distance. Environ. Entomol. 15: 198-204.
Sokolove, P. G. and Bushell, W. N. 1978. The chi squire periodogram: Its utility for analysis of circadian rhythms. J. Theor. Biol. 72: 131-160.
Sommer, S. H. 1975. Experimental investigation of the circadian locomotor activity of Blattella germanica (L.). Biol. Zentralbl. 94: 455-467.
Taghert, P. H. 2001. How does the circadian clock send timing information to the brain? Cell Development. Biol. 12: 329-342.
Turman, J. W., and L. M. Riddiford. 1970. Neuroendocrine control of ecdysis in silkmoths. Science (Wash.) 167: 1624-1626.
Vosshall, L. B., and M. W. Young. 1995 Circadian rhythm in Drosophila can be driven by period expression in a restricted group of central brain cells. Neuron. 15: 345-360.
Wen, H. W., and H. J. Lee. 2000. Unequal coupling between locomotor pacemakers of the German cockroach, Blattella germanica (L.). J. Insect Physiol. 46: 89-97.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36267-
dc.description.abstract昆蟲體內的生物時鐘提供時間訊息讓個體能有效面對每日外在環境的變化。在傳統實驗方法上,要能明確獲得生物時鐘的相位變化需要至少10天以上的活動資料,或者是採用族群試驗的平均資料。而後經由資料的計算分析,我們才能分辨昆蟲體內時間訊息的變化模式。為了能夠縮短實驗所需的時間,或者在緊急狀況時能快速知道個體所處的時間相位,一個能快速與精確測定的應用方法是需要的。德國蜚蠊(Blattella germanica)雄性成蟲在活動行為上表現出日週律動;然而雌性成蟲的活動行為日週律動被與卵巢發育的相關機制所掩蓋,但是在其他的生理機制上,生物時鐘似乎表現出明顯的日週律動。觸角電位圖譜(electroantennogram, EAG)可成為一種有效、能快速監測時間相位,並且較其他方法更不會傷害受測體的測量方法。在德國蜚蠊的觸角電位圖譜記錄中,雄成蟲的EAG振幅大小表現出日週律動的現象,EAG振幅大小的規律性和活動行為的規律性相同。在持續黑暗的環境條件下,EAG的最大振幅出現在相對夜晚,週期長度(circadian period)小於24小時。同樣的,在16L:8D的試驗環境下,EAG的最大振幅也出現在夜晚。然而德國蜚蠊雌成蟲的EAG反應並沒有表現出日週律動,推測可能也受到卵巢發育的影響。德國蜚蠊對乙酸乙酯的濃度感度實驗中,EAG振幅的變化量並沒有隨著乙酸乙酯濃度增加而增加。利用EAG快速鑑定時間相位的實驗中,德國蜚蠊成蟲在相對白天與相對夜晚的EAG振幅大小比較量不顯著而無法表現出明顯的差異,推測其原因可能是由於不同的時間相位裡,EAG振幅也會有高低變化,而無法絕對判定在相對夜晚的EAG振幅大小一定高於在相對白天時的EAG振幅。因此,利用EAG快速鑑定時間相位的方法仍然需要進一步的探討。zh_TW
dc.description.abstractEndogenous circadian clock is the timing device that insects use to anticipate the daily environmental changes. The traditional way to understand the phase changes of the circadian clock is to obtain long continuous data (at least 10 days worth of observation on locomotion) or a population data (such as timing of adult emergence). The circadian phase, then, can be known by calculating the data after the experiments. To shorten the long experimental time or an urgent need to know the phase, a rapid method to reveal the phase for the exact individual is an ideal way for the application of the knowledge of circadian clock. Adult males of the German cockroaches (Blattella germanica) express circadian rhythm in locomotion. Although adult females’ locomotor circadian rhythms are masked by the developing ovary, their circadian clocks are running and can be expressed in other overt rhythms. Since electroantennogram (EAG) is a quick, sensitive and a relatively non-intrusive method to monitor the phase of the circadian clock, the purpose in this study is to establish a basic reliable circadian pattern of EAG that corresponds to the overt rhythm of locomotion. Adult male German cockroaches have circadian rhythm of neuron activity in olfactory response by measuring EAG. By using ethyl acetate as the stimulus, the amplitude of EAG response fluctuates under constant darkness or light-dark cycle. The peak of response was at the subjective night. However, the EAG responses of adult females are arrhythmic. Dilution-responded curves of EAG indicate that waveforms of EAG response are similar when stimulated by different concentrations of ethyl acetate. The result indicates that adult males expressed EAG circadian rhythm and the masking effects on female’s locomotion may hinder the measurement of EAG response.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:55:24Z (GMT). No. of bitstreams: 1
ntu-94-R91632017-1.pdf: 1279777 bytes, checksum: db18eec036d7e2eba0bbe9c9d975781c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要……………………………………………………………………………......I
Abstract……………………………………………………………………………..….II
1. Introduction…………………………………………………………………………......1
2. Literature review……………………………………………..…..……………………..4
(1) Pacemaker………………………………………………..………………….....4
(2) Circadian output pathway………………………………………………………......5
(3) The role of PDF and pdf-expressing neurons…………………………………….....7
(4) The output signals of pacemaker cells...……………..…….......................................8
(5) Masking effect……………………………………………….………………….......9
(6) EAG…………………………………………………………………………….......10
3. Materials and methods…………………………………………………………….........12
(1) Insect………………………………………………………………………...….......12
(2) Locomotor activity……………………………………..………………….......12
(3) EAG………………………………………………………………………….….13
(4) Stimulus………………………………………………………………………...14
4. Results...…………………………………………………………………………..........16
(1) EAG waveform………………………………………………………………..........16
(2) Circadian rhythm of EAG……………………………………………………......…17
(3) Quick determination of circadian phase.….…………………...............................…19
(4) Chemical sensilla on antenna...……………………………………………..……....19
5. Discussion………………………………………………………………….…………...21
(1) EAG waveform……………………………………………………….………….…21
(2) Circadian rhythm of EAG………………………………………………….…….21
(3) The development of a quick determination of circadian phase..................................23
6. References………………………………………………………………………....24
7. Acknowledgments……………………………………………………………….….…..43
dc.language.isoen
dc.title德國蜚蠊觸角電位圖譜之日週律動表現zh_TW
dc.titleThe expression of circadian rhythm in Electroantennogram (EAG) of the German cockroach, Blattella germanica (L)en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪淑彬,楊恩誠
dc.subject.keyword德國蜚蠊,觸角電位圖譜,日週律動,zh_TW
dc.subject.keywordElectroantennogram,EAG,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved