請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36255
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑 | |
dc.contributor.author | Chun-Chieh Huang | en |
dc.contributor.author | 黃俊傑 | zh_TW |
dc.date.accessioned | 2021-06-13T07:55:04Z | - |
dc.date.available | 2008-07-30 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-24 | |
dc.identifier.citation | [1] Winter JO, Schmidt CE. Biomimetic strategies and applications in the nervous system. In Biomimetic Materials and Design: Biointerfacial Strategies, Tissue Engineering, and Targeted Drug Delivery, ed. A Dillow, A Lowman. New York: Marcel Dekker 375–415, 2002
[2] Chaudhry V, Glass JD, Griffin JW. Wallerian degeneration in peripheral nerve disease. Neurol. Clin. 10:613–27, 1992 [3] Bahr M, Bonhoeffer F. Perspectives on axonal regeneration in the mammalian CNS. Trends Neurosci. 17:473–79, 1994 [4] Fields RD, Ellisman MH. Axons regenerated through silicone tube splices. I. Conduction properties. Exp. Neurol 92:48–60, 1986 [5] Braum RM. Epineurial nerve suture. Clin. Orthop. 163:50–60, 1982 [6] Millesi H. The current state of peripheral nerve surgery in the upper limb. Ann Chir Main 3:18–34, 1984 [7] Lundborg G. Nerve injury and repair. Edinburgh: Churchill Livingstone, 1988 [8] Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J. Hand Surg. [Am.] 25:391–414, 2000 [9] Chiu DT. Special article: the development of autogenous venous nerve conduit as a clinical entity. In P&S Medical Review 3(1), 1995 [10] Breidenbach WC, Terzis JK. Vascularized nerve grafts: an experimental and clinical review. Ann Plast Surg 18:137–46, 1987 [11] Costantino PD, Wolpoe ME, Govindaraj S, Chaplin JM, Sen C, et al. Human dural replacement with acellular dermis: clinical results and a review of the literature. Head Neck 22:765–71, 2000 [12] ZhangF, Blain B, Beck J, ZhangJ, Chen Z, Chen ZW, Lineaweaver WC. Autogenous venous graft with one-stage prepared Schwann cells as a conduit for repair of longseg mental nerve defects. J Reconstr Microsurg 18:295–300, 2002 [13] Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Clin. Plast. Surg. 26: 617–28, 1999 [14] Grimpe B, Silver J. The extracelextracellular matrix in axon regeneration. Prog. Brain Res. 137:333–49, 2002 [15] Francis J. K., Matthew H. W.T., Application of Chitosan-Based Polysaccharide Biomaterial in Cartilage Tissue Engineering: a Review. Biomaterials 21:2589–2598, 2000 [16] Singla A. K. and Charla M., Chitosan: some pharmaceutical and biological aspects- an update. J Pharm Pharmacol 53: 1047-1067, 2001 [17] Illum L., Chitosan and its use as a pharmaceutical excipient. Pharm Res 15-9:1326-1331, 1998 [18] Kas H. S., Chitosan: properties, preparations and application to microparticulate systems. J Microencap 14-6:689-711, 1997 [19] Errington N., Harding S. E. et al., Hydrodynamic characterization of chitosans varying in molecular weight and degree of acetylation. Int J Biol Macromol 15:119-117, 1993 [20] Jollès, P. and Muzzarelli, R. A. A., Chitin and Chitinase, Birkhauser Verlag, Boston, 1999 [21] Hirano S., Tsuchida H., Nagao N., N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 10(8):574-576, 1989 [22] Dixon M., Edwin C., et al., Enzymes, 3rd ed., Academic Press, New York 1976 [23] Sanflord P. A., Chitosan and algimate: new forms of commercial interest. Am Chem Soc Div Polym Chem 31:628, 1990 [24] Smeal RM, Rabbitt RD, Tresco PA. Substrate curvature restricts the directional outgrowth of dorsal root ganglion cells: implantations for development. 30th Annual Meeting Transactions, Society for Neurosci. 2000 [25] Shoichet MS, Shaw D. Peptide-modified ePTFE fibers guide axonal elongation. J Craniofacial Surg. in press [26] Rodriguez FJ, Gomez N, Perego G, Navarro X. Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials 20:1489–500, 1999 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36255 | - |
dc.description.abstract | 對於週邊神經的再生,通常會使用人造的神經導管作為輔助,以避免直接縫合受損的神經時,對神經所造成的張力。幾丁聚醣在目前所使用作為人造神經導管當中,是相當具有潛力的一種材料,因為其良好的性質,如生物適應性、生物可降解性、引起較少的組織反應等等,幾丁聚醣也經過FDA認證,使得臨床的應用更為可能。
在本研究中,我們發展了一個全新的方法製造神經導管,包含了加熱線絲與冷凍乾燥的過程,不但容易且具有再現性。幾丁聚醣導管的性質,如表面微結構、結晶度以及中和劑的選用也被研究。實驗結果顯示含有中心孔道的幾丁聚醣導管具有高孔隙度,且適合使用弱鹼作為中和劑,使用弱鹼作為中和劑,不但可以保持導管內的微結構不變化,也可以保持幾丁聚醣的結晶性。幾丁聚醣導管的降解測試也顯示其在神經修復的期間之內,仍足以維持結構上的支持。 本實驗更進一步測試幾丁聚醣的細胞活性,使用許旺氏細胞培養於幾丁聚醣薄膜上,結果雖然顯示細胞在幾丁聚醣薄膜上缺乏良好的細胞貼附性,但是可以透過表面改質的方式接上生物分子(本實驗使用昆布胺酸),以增進細胞的貼附性。但另一方面,將細胞培養於幾丁聚醣的孔道內,卻顯示了生長不佳的結果,推測的原因可能因為孔道內表面缺乏生物分子的修飾,也可能是因為孔道的形態不適合細胞生長。 | zh_TW |
dc.description.abstract | For peripheral nerve regeneration, it often uses artificial nerve conduits to prevent the nerve from the tension applied during suturing the injured nerve directly. Chitosan is one of the most potential materials to be used for manufacture artificial nerve conduits due to its outstanding characteristics, such as biocompatibility, biodegradability, induce less tissue response and so on. Chitosan is also proved medicinal by FDA so as to make it possible to be used on clinic.
In this study, we develop a brand new method, wire-heating and lyophilizing process, for manufacturing nerve conduit, and make it facile and reproducible. The characteristics of chitosan conduits, such as micro surface morphology, crystalline, and the choice of neutralizer are also evaluated. The experiment results show that the chitosan conduits with the hollow channels are highly porous, and are appropiate to use weak base as neutralizer. Using weak base as neutralizer can not only hold the micro-structure but also keep the crystalline of chitosan. The degradation rate test of chitosan conduits also shows that the conduits can provide with a longer lasting structure support during the period of nerve regeneration. Furthermore, we also evaluate the cell viability of chitosan. Schwann Cells were cultured on chitosan membrane, and further on conduits. It shows that chitosan membrane surface modified with biomolecules, one of which laminin was used in this study, can improve the poor condition of cell adhesion to chitosan membrane. However, it was also found that a poor result appeared in the culture of Schwann Cells in chitosan conduits. It is assumed that one reason could be the absence of biomolecular modification, and the other one could be the shape of the channel not being adapted to the cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:55:04Z (GMT). No. of bitstreams: 1 ntu-94-R92548032-1.pdf: 3304960 bytes, checksum: db53ab65f35456fb937c92e76206fe6a (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄 I
圖目錄 IV 表目錄 VII 摘要 VIII Abstract X 第一章 緒論 1 第二章 文獻回顧 3 2-1 週邊神經的生理學 3 2-2 週邊神經的再生 5 2-3 神經再生技術的歷史發展 6 2-3-1 神經縫合 6 2-3-2 組織移植 7 2-3-3 神經導管 10 2-3-3-1 合成材料 12 2-3-3-2 天然材料 14 2-4 幾丁聚醣 15 第三章 研究動機與目的 20 第四章 實驗材料與方法 22 4-1 實驗藥品 22 4-2 實驗儀器 23 4-3 實驗溶液與培養液配製 25 4-4 實驗方法 28 4-4-1 神經導管製備 28 4-4-2 掃描式電子顯微鏡(SEM)觀察 29 4-4-3 熱差分析儀(DSC)觀察 31 4-4-5 許旺氏細胞培養及純化 33 4-4-6 細胞免疫染色 35 4-4-7 幾丁聚醣之細胞活性測試 37 4-4-7-1 幾丁聚醣薄膜之製備 37 4-4-7-2 幾丁聚醣薄膜之改質與細胞培養 38 4-4-7-3 幾丁聚醣導管之細胞培養 39 4-4-7-4 細胞計數 40 4-4-7-5 MTS細胞活性測試 41 4-4-7-6 幾丁聚醣導管組織切片 43 第五章 研究結果與討論 44 5-1 幾丁聚醣神經導管性質分析 44 5-1-1 形態分析 44 5-1-3 中和分析 48 5-1-4 降解度分析 50 5-2 細胞培養 51 5-2-1 許旺氏細胞純化 51 5-2-2 許旺氏細胞培養於幾丁聚醣薄膜 52 5-2-3 許旺氏細胞培養於幾丁聚醣導管孔道 54 第六章 結論 55 第七章 參考文獻 56 圖表目錄 圖2-1 週邊神經細胞之構造 7 圖2-2 週邊神經束的解剖構造 8 圖2-3 週邊神經再生過程圖 9 圖2-4 神經束膜縫合示意圖 11 圖2-5 理想的神經導管所應具備的性質 15 圖2-6 幾丁聚醣的製備程序 20 圖2-7 (a)幾丁質與(b)幾丁聚醣的化學結構式 20 圖4-1 MTS tetrazolium 的結構和formazan產物 46 圖4-2 MTS 分析中490nm 吸收值與細胞總數的關係值 46 圖5-1 所製成之幾丁聚醣導管外觀(a)俯視圖(b)側視圖 62 圖5-2 以鎳鉻絲直徑為(a)115μm及(b)230μm之幾丁導管橫切面 63 圖5-3 孔道縱切面之內側顯微表面(a)150x(b)500x 64 圖5-4 以水銀孔隙測量儀所測得之幾丁聚醣導管孔隙度分布 65 圖5-5 熱差分析儀圖(a)未處理過(b)以1M NaHCO3中和後之幾丁聚醣導管 66 圖5-6 中和過後之幾丁聚醣導管橫切面1000x(a)強鹼中和(b)弱鹼中和 67 圖5-7 中和過後之幾丁聚醣導管孔道橫切面500x(a)強鹼中和(b)弱鹼中和 68 圖5-8 幾丁聚醣導管降解率測試 69 圖5-9 初代培養三週的許旺氏細胞100x 70 圖5-10 許旺氏細胞免疫染色100x(a)相位差(b)螢光(c)相位差與螢光疊合 71 圖5-11 許旺氏細胞培養於經氧電漿活化表面並塗覆昆布胺酸之幾丁聚醣薄膜100x(a)一天(b)三天(c)五天 72 圖5-12 許旺氏細胞培養於直接塗覆昆布胺酸之幾丁聚醣薄膜100x(a)一天(b)三天(c)五天 73 圖5-13 許旺氏細胞培養於幾丁聚醣薄膜100x(a)一天(b)三天(c)五天 74 圖5-14 許旺氏細胞培養於不同幾丁聚醣薄膜十天之MTS測試 (a)全光譜吸收值(b)490 nm吸收值 75 圖5-15 許旺氏細胞培養於幾丁聚醣導管七天(a)40x(b)100x 76 圖5-16 許旺氏細胞培養於幾丁聚醣導管之MTS測試 77 表目錄 表2-1 幾丁聚醣的生醫應用 21 | |
dc.language.iso | zh-TW | |
dc.title | 以幾丁聚醣製備多孔道週邊神經導管之生物適應性 | zh_TW |
dc.title | The Biocompatibility of Multi-Channel Peripheral Nerve Conduit Manufactured by Chitosan | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭宏志,鐘次文,劉得任 | |
dc.subject.keyword | 組織工程,週邊神經再生,神經導管,幾丁聚醣, | zh_TW |
dc.subject.keyword | Tissue Engineering,Peripheral Nerve Regeneration,Nerve Conduit,Chitosan, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。