Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳先琪
dc.contributor.authorYu-Hsiang Wangen
dc.contributor.author王郁翔zh_TW
dc.date.accessioned2021-06-13T07:53:43Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation1. Alessi, D. S. and Li, Z. H., “Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron”, Environ. Sci. Technol., Vol. 35, pp. 3713-3717, (2001).
2. Campbell, T. J., Burris, D. R., Roberts, A. L., and Wells, J. R.,” Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system”, Environ. Toxicol. Chem., Vol. 6, pp. 625-630, (1997).
3. Cheng, I. F., Muftikian, R., Fernando, Q., and Korte, N., ”Reduction of nitrate to ammonia by zero-valent iron”, Chemosphere, Vol. 35, pp. 2689-2698, (1997).
4. Cheng, S. F., and Wu, S. C., ”The enhance methods for the degradation of TCE by zero-valent metals”, Chemosphere, Vol. 41, pp. 1263-1270, (2000).
5. Daniel W. Elliott and Zhang W. X., “Field assessment of nanoscale bimetallic particles for groundwater treatment”, Environ. Sci. Technol., Vol. 35, pp. 4922-4926, (2001).
6. Doong, R. A., Chen, K. T. and Tsai, H. C., ”Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants”, Environ. Sci. Technol., Vol. 37, pp. 2575-2581, (2003).
7. Ekwall, P., Mandell, L., and Solyom, P., “Aqueous cetyltrimethyl- ammonium bromide(CTAB) solutions”, J. Colloid Interface Sci., Vol. 35, pp. 519, (1971).
8. Fan, P. S., Turro, N. J., and Somasundaran, P., “Role of sequential adsorption of polymer/surfactant mixtures and their conformation in dispersion/flocculation of alumina”, Colloids Surf., A, Vol. 146, pp. 397–403, (1999).

9. Gavaskar, A. R., Gupta, N., Sass, B. M., Janosy, R. J., and O’sullivan, D., “Permeable barriers for ground water remediation design, construction, and monitoring”, Battele Press., USA, (1998).
10. Geiger, C. L., Clausen, C. A., Brooks, K., and Major, D., “Nanoscale and microscale iron emulsions for treating DNAPL”, 221st National Meeting, American Chemical Society. San Diego, CA. Preprint Extended Abstracts, Division of Environmental Chemistry, 41, 1, pp. 1028-1033, (2001).
11. Gleiter, H., Birringer, R., Klein, H. P. and Marquardt, P., “Nanocrystalline materials: an approach to a novel solid structure with gas-like disorder? ”, Phys. Lett. A, Vol. 102, pp. 365, (1984).
12. Goon, P., Manohar, C., and Kumar, V. V., “Determination of critical micelle concentration of anionic surfactants, comparison of internal and external fluorescent probes”, J. Colloid Interface Sci., Vol. 189, pp. 177-180, (1997).
13. Huang, C. P., Wang, H. W., and Chiu, P. C., ”Nitrate reduction by metallic iron”, Water Res., Vol. 32, pp. 2257-2264, (1998).
14. Lein, H. L., “Nanoscale bimetallic particles for dehalogenation of halogenated aliphatic Compounds,” Ph. D. Dissertation, Lehigh University (2000).
15. Liu, F. K., and Wei, G. T., “Adding sodium dodecyl sulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis”, Anal. Chim. Acta, Vol. 510, pp. 77-83, (2004).
16. Loraine, G. A., ”Effects of alcohols, anions and nonionic surfactants on the reduction of PCE and TCE by zero-valent iron”, Water Res., Vol. 35, pp. 1453-1460, (2001).
17. Lovelace, K. A., “Evaluating the technical impracticability of groundwater cleanup”, 1997 International Conference on
Groundwater Quality Protection, Taipei, pp. 165-179, (1997).
18. Mallouk, T. E., Bettina, S., Bianca, W. H., and Jennifer, L. B., “Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater”, Chem. Mater., Vol. 16, pp. 2187-2193, (2004).
19. Miller, K. J., Goodwin, S. R., Westermann-Clark, G. B., and Shah, D. O, “Importance of molecular aggregation in the development of a topical local anesthetic”, Langmuir, Vol. 9, pp. 105, (1993).
20. Mohanty, K. K., and Li, F., Vipulanandan, C., “Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene”, Colloids Surf., A, Vol. 223, pp. 103-112, (2003).
21. Nyer, E. K., “DNAPL-stop the madness”, Ground Water, Vol. 19(1), pp. 62-66, (1999).
22. Papp, S. and Dekany, I., “Stabilization of palladium nanoparticles by polymers and layer silicates”, Colloid Polym. Sci., Vol. 281, pp. 727-737, (2003).
23. Ponder, S. M., Darab, J. G., and Mallouk, T. E., “Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron”, Environ. Sci. Technol., Vol. 34, pp. 2564-2569, (2000).
24. Schere, M. M., S. Richter, R. L. Valentine, and P. J. J. Alvarez, “Chemistry and microbiology of permeable reactive barriers for in-situ groundwater clean up”, Critical Reviews in Environmental Science and Technology, Vol. 30(3), pp. 364-411, (2000).
25. Sondi, I., Goia, D. V., and Matijević, E., “Preparation of highly concentration stable dispersions of uniform silver nanoparticles”, J. Colloid Interface Sci., Vol. 260, pp. 75-81, (2003).
26. Stigter, D. J., “On the adsorption of counterions at the surface of detergent micelles”, J. Phys. Chem., Vol. 68, pp. 3603, (1964).

27. U. S. EPA, “Field applications of in-situ remediation technologies : permeable reactive barriers ”, Office of Solid Waste and Emergency Response, Technology Innovation Office, EPA-542-R-99-002, (1999a).
28. Van Os, N. M., Danne, G. J., and Bolsman, T. A. B. M., ”The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulfonates”, J. Colloid Interface Sci., Vol. 123, pp. 267, (1988).
29. Zhang, W. X. and Lien, H. L., ”Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al”, Chemosphere, Vol. 49, pp. 371-378, (2002).
30. Zhang, W. X. and Lien, H. L., ”Nanoscale iron particle for complete reduction of chlorinated ethenes”, Colloids Surf., A, Vol. 191, pp. 97-105, (2001).
31. Zhang, W. X., “Nanoscale iron particles for environmental remediation: an overview”, J. Nanoparticle Research, Vol. 5, pp. 323-332, (2003).
32. 台灣大學奈米科技研究中心 http://nanost.ntu.edu.tw/chinese.asp。
33. 行政院環保署 http://www.epa.gov.tw/main/index.asp。
34. 何東垣,「溶解態二價鐵及三價鐵測定方法之建立與其在自然水體中之應用」,國立台灣大學海洋研究所碩士論文,(1994)。
35. 陳維基,「土壤水分對土壤氣提法去除甲苯的影響」,國立台灣大學環境工程學研究所碩士論文,(1997)。
36. 程淑芬,「斗閘式現地地下水污染復育技術之探討」,國立台灣大學環境工程學研究所博士論文,(2000)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36203-
dc.description.abstract以零價鐵顆粒去除地下水水中污染物質,如多氯乙烷或氯乙烯,已受到廣泛研究與運用。本研究嘗試將不同界面活性劑加入溶液中製備穩定的奈米鐵懸浮液。如此,處理地下水污染物時,可以鑿井注入方式將奈米鐵懸浮液注入地下水層中,增加傳輸效果,任其擴散至定點,以處理地下水中之含氯碳氫化合物。
研究中使用連續流方式自行製備奈米零價鐵顆粒,並於管線中加入不同之界面活性劑後,探討鐵顆粒在懸浮液中的穩定效果。在界面活性劑的選擇方面,實驗發現市售清潔劑比文獻中常見之界面活性劑SDS (sodium dodecyl sulfate)可使奈米鐵顆粒達到更好的懸浮效果,且對環境之危害較小。實驗結果顯示製備奈米鐵顆粒之原料硫酸亞鐵及硼氫化鈉在濃度為0.009M及0.053M時,生成的奈米鐵顆粒粒徑較小且可達到較好的懸浮效果。實驗於連續流裝置中加入濃度6936 mg L-1市售清潔劑可大幅提升奈米鐵顆粒的懸浮效果且顆粒粒徑經過TEM 顯微鏡觀察約40-150 nm。
實驗最後進行奈米鐵顆粒之土柱貫穿試驗,暸解奈米鐵顆粒於50公分土柱中之傳輸效能。實驗得知約50 %之奈米鐵顆粒貫穿土壤管柱。
zh_TW
dc.description.abstractZero valent iron (ZVI) has been widely used for reducing the pollutants such as poly-chlorinated ethane and ethylene in contaminated groundwater aquifers. However, the cost for delivering and retaining ZVI at certain location in environmental matrixes may be high. It was my attempt to develop a technique that could stablize the nano-scale iron particles by adding different surfactants. So that, we may deploy nano-scale iron particles into groundwater aquifers by way of injection.
In this study, different surfactants were added to the suspension of nano iron particles that was prepared with a continuous manufacturing system. A commercialized, environmental-friendly dish-washing detergent was found to better keep nano-iron suspending than sodium dodecyl sulfate (SDS), which is a commonly used surfactant in literatures.
Stable suspension of nano-scale iron particles with diameter of 300nm to 1μm were made by mixing two solutions with concentrations of 0.009M FeSO4 and 0.053M NaBH4, respectively. Adding commercial detergent at a concentration of 6936 mg L-1 in the continuously manufacturing system produced stable iron particles in the suspension with size ranging from 40 to 150 nm observed by TEM.
Nano-scale iron suspension was passed through a 50-cm-long soil column to minic the transport in the field soil. About 50 % of nano-scale iron passed through the soil column.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:53:43Z (GMT). No. of bitstreams: 1
ntu-94-R92541122-1.pdf: 1096942 bytes, checksum: e361083a70205ed34e8447df2e93b99d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章 前言……………………………………………………………1
1.1 研究緣起………………………………………………………...1
1.2 研究目的及內容………………………………………………...2
第二章 文獻回顧……………………………………………………....5
2.1 地下含水層……………………………………………………...5
2.1.1 地下含水層污染……………………………………………5
2.1.2 含氯有機物之污染現況……………………………………5
2.1.3 受含氯有機物污染之地下水源整治復育技術…………....6
2.2 利用零價鐵金屬降解含氯有機污染物之整治技術…………...8
2.2.1 零價鐵金屬降解含氯有機物之原理與機制………………8
2.2.2 改善零價鐵金屬對還原脫氯的效率……………………....9
2.3 奈米顆粒的特性…………….............................………………10
2.4 奈米科技(Nanotechnology)的發展…………….......……….…11
2.4.1 運用奈米零價鐵顆粒於地下水污染整治………………..12
2.4.2 奈米鐵顆粒之製備……………………………………..…13
2.5 奈米顆粒之穩定性探討………………………………….……14
2.5.1 奈米顆粒在地下水層中之傳輸與問題…………………..14
2.5.2 奈米顆粒之絮聚化………………………………………..15
2.5.3 界面活性劑………………………………………………..17
2.5.4 臨界微胞濃度(critical micelle concentration, CMC)……..18
2.5.5 臨界微胞濃度之量測……………………………………..20
第三章 研究方法……………………………………………………....23
3.1 研究架構……………………………………………………….23
3.2 界面活性劑CMC值之量測…………………………………...23
3.3 懸浮奈米鐵顆粒之製備……………………………………….25
3.3.1 以批次式製備奈米鐵顆粒………………………………..25
3.3.2 以連續流方式製備奈米鐵顆粒…………………………..25
3.4 懸浮奈米鐵顆粒特性分析…………………………………….27
3.4.1 使用濁度計測量奈米鐵顆粒懸浮性……………………..27
3.4.2 使用AA測量奈米鐵顆粒懸浮性…………………….…..27
3.4.3 使用ZetaSizer分析奈米鐵顆粒之粒徑分佈………..……28
3.4.4 使用TEM穿透式電子顯微鏡測量奈米鐵顆粒粒徑…….29
3.5 奈米鐵顆粒貫穿土壤管柱試驗…………………………….…30
3.5.1 土壤樣品來源及前處理………………………………......30
3.5.2 土讓樣品一般性質分析………………………………..…30
3.5.3 土柱塡裝………………………………………………..…32
3.5.4 奈米零價鐵懸浮液貫穿土柱試驗………………………..34
3.5.5 貫穿土柱試驗後奈米鐵溶液中鐵物種之分析…………..34
第四章 實驗結果與討論………………………………………………37
4.1 界面活性劑特性分析……………………………………….…37
4.1.1 十二烷基硫酸鈉(SDS)之CMC值量測結果…………….37
4.1.2 市售清潔劑之性質………………………………………..37
4.1.3 市售清潔劑之CMC值量測結果………………………...38
4.2 奈米零價鐵溶液懸浮性分析結果…………………………….39
4.2.1 FeCl3與FeSO4所製備之奈米鐵懸浮液之懸浮效果比較..39
4.2.2 比較批次式與連續式製備奈米鐵懸浮液之懸浮效果…..40
4.2.3 原料及界面活性劑濃度對奈米鐵懸浮液懸浮性之影響..43
4.2.4 界面活性劑加入點對製備奈米鐵懸浮液之懸浮性影響..48
4.2.5 市售清潔劑對奈米鐵懸浮液之懸浮效果影響……………51
4.2.6 不同界面活性劑對超音波震盪實驗程序之影響………....55
4.2.7 以連續流製備完成之奈米鐵懸浮液零價鐵含量分析…....56
4.3 奈米鐵顆粒粒徑分析結果……………………...……………..56
4.3.1 利用穿透式電子顯微鏡(TEM)觀察奈米鐵顆粒之型態...56
4.3.2 奈米鐵懸浮液中鐵顆粒之粒徑分布……………………..58
4.4 奈米零價鐵懸浮液貫穿土壤管柱試驗……………………….64
4.4.1 土壤基本性質分析結果…………………………………..64
4.4.2 土壤管柱A奈米鐵懸浮液穿透試驗結果………………..64
4.4.3 土壤管柱B奈米鐵懸浮液穿透試驗結果………………..65
4.4.4 貫穿土壤管柱B之溶液內零價鐵含量分析……………..68
第五章 結論與建議…………………………………………………....69
參考文獻………………………………………………………………..71
附錄:圖之數據資料……………………………………………………77
dc.language.isozh-TW
dc.title穩定奈米零價鐵顆粒之製備及在多孔介質中之傳輸zh_TW
dc.titleStable nano-scale iron suspension: preparation and transportat in porous mediaen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee駱尚廉,連興隆
dc.subject.keyword奈米鐵懸浮液,十二烷基硫酸鈉,市售清潔劑,土壤管柱,zh_TW
dc.subject.keywordnano-scale iron suspension,sodium dodecyl sulfate,detergent,soil column,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved