請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36202完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | |
| dc.contributor.author | Fang-Cheng Su | en |
| dc.contributor.author | 蘇芳正 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:53:41Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2005-07-28 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | 1. 陳博光, 現代骨科診療室. 2000: 正中書局.
2. 游祥明, 安晏仁, 古宏海, 傅毓秀, and 林光華, 解剖學. 1998, 匯華圖書出版有限公司: 台北市. p. 144~47. 3. Tsuang Y.H., 'Recent advances in spinal surgery'. Department of Orthopedic Surgery, 1998. 2(2): p. 199-203. 4. Gaines R.W., 'The use of pedicle-screw internal fixation for the operative treatment of spinal disorders (Current Concepts Review)'. The Journal of Bone and Joint Surgery, 2000. 82-A(10): p. 1458-76. 5. Krag M.H., 'Biomechanics of thoracolumbar spinal fixation (A Review)'. Spine, 1991. 16(3): p. S84-S97. 6. Harrington P.R. and H.S. Tullos, 'Reduction of severe spondylolisthesis in children'. South Med J, 1969. 62: p. 1-7. 7. Roy-Camille R., G. Saillant, and M. C., 'Internal fixation of the lumbar spine with pedicle screw plating'. Clinical Orthopedic and Related Research, 1986. 203: p. 7-17. 8. Ashman R.B., R.D. Galpin, J.D. Corin, and C.E. Johnston, 2nd, 'Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model'. Spine, 1989. 14(12): p. 1398-405. 9. Fogel G.R., C.A. Reitman, W. Liu, and S.I. Esses, 'Physical Characteristics of Polyaxial-Headed Pedicle Screws and Biomechanical Comparison of Load With Their Failure'. Spine, 2003. 28(5): p. 470-73. 10. Chen P.Q., S.J. Lin, S.S. Wu, and H. So, 'Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design'. Spine, 2003. 28(9): p. 881-6 11. 黃振賢, 機械材料. 1990, 台北市: 文京圖書有限公司. 12. Cunningham B.W., J.C. Sefter, Y. Shono, and P.C. McAfee, 'Static and cyclical biomechanical analysis of pedicle screw spinal constructs'. Spine, 1993. 18(12): p. 1677-88. 13. Duffield R.C., W.L. Carson, L.Y. Chen, and B. Voth, 'Longitudinal element size effect on load sharing, internal loads, and fatigue life of tri-level spinal implant constructs'. Spine, 1993. 18(12): p. 1695-703. 14. Goel V.K., J.M. Winterbottom, and J.N. Weinstein, 'A method for the fatigue testing of pedicle screw fixation devices'. Journal of Biomechanics, 1994. 27(11): p. 1383-88. 15. Chiba M., R.F. Mclain, S.A. Yerby, T.A. Moseley, T.S. Smith, and D.R. Benson, 'Short-segment pedicle instrumentation'. Spine, 1996. 21(3): p. 288-94. 16. Stambough J.L., G. A.M., H. R.L., H. Serhan, and E.H. Sabri, 'Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determonation of failure modes'. Journal of Spinal Disorders & Techniques, 1997. 10(6): p. 473-81. 17. McKinley T.O., R.F. McLain, S.A. Yerby, N. Sarigul-Klijn, and T.S. Smith, 'The effect of pedicle morphometry on pedicle screw loading. A synthetic model'. Spine, 1997. 22(3): p. 246-52. 18. McLain R.F., T.O. McKinley, S.A. Yerby, T.S. Smith, and N. Sarigul-Klijn, 'The effect of bone quality on pedicle screw loading in axial instability. A synthetic model'. Spine, 1997. 22(13): p. 1454-60. 19. Yerby S.A., J.R. Ehteshamic, and R.F. McLainb, 'Loading of pedicle screws within the vertebra'. Journal of Biomechanics, 1997. 30(9): p. 951-54. 20. Pienkowski D., G.C. Stephens, T.M. Doers, and D.M. Hamilton, 'Multicycle Mechanical Performance of Titanium and Stainless Steel Transpedicular Spine Implants'. Spine, 1998. 23(7): p. 782-88. 21. McKinley T.O., R.F. McLain, S.A. Yerby, N.A. Sharkey, N. Sarigul-Klijn, and T.S. Smith, 'Characteristics of pedicle screw loading. Effect of surgical technique on intravertebral and intrapedicular bending moments'. Spine, 1999. 24(1): p. 18-24. 22. Stambough J.L., F.E. Khatib, A.M. Genaidy, and R.L. Huston, 'Strength and fatigue resistance of thoracolumbar spine implants: an experimental study of selected clinical devices'. Journal of Spinal Disorders & Techniques, 1999. 12(5): p. 410-14. 23. Youssef J.A., T.O. McKinley, S.A. Yerby, and R.F. McLain, 'Characteristics of Pedicle Screw Loading: Effect of Sagittal Insertion Angle on Intrapedicular Bending Moments'. Spine, 1999. 24(11): p. 1077. 24. Kotani Y., B.W. Cunningham, L.M. Parker, M. Kanayama, and P.C. McAfee, 'Static and Fatigue Biomechanical Properties of Anterior Thoracolumbar Instrumentation Systems: A Synthetic Testing Model'. Spine, 1999. 24(14): p. 1406-13. 25. Dick J.C. and C.A. Bourgeault, 'Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants'. Spine, 2001. 26(15): p. 1668-72. 26. Hansson S. and M. Werke, 'The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study'. Journal of Biomechanics, 2003. 36: p. 1247-58. 27. Chen S.I., R.M. Lin, and C.H. Chang, 'Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions'. Med Eng Phys, 2003. 25(4): p. 275-82. 28. Serhan H., M. Slivka, T. Albert, and S.D. Kwak, 'Isgalvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?' The spine Journal, 2004. 4: p. 379-87. 29. Stanford R.E., A.H. Loefler, P.M. Stanford, and W.R. Walsh, 'Multiaxial pedicle screw designs: static and dynamic mechanical testing'. Spine, 2004. 29(4): p. 367-75. 30. Keyak J.H. and H.B. Skinner, 'Three-dimensional finite element modelling of bone: effects of element size'. Journal of Biomedical Engineering, 1992. 14. 31. Marks L.W. and T.N. Gardner, 'The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence'. Journal of Biomedical Engineering, 1993. 15: p. 474-76. 32. Crawford R.P., W.S. Rosenberg, and T.M. Keaveny, 'Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions'. Journal of Biomechanical Engineering, 2003. 125: p. 434-38. 33. Mott R.L., MACHINE ELEMENTS IN MECHANICAL DESIGN, ed. S. Helba. 1992, the United States of America. 34. Hsu C.C., C.K. Chao, J.L. Wang, S.M. Hou, Y.T. Tsai, and J. Lin, 'Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses'. Journal of Orthopaedic Research, 2004. in press. 35. Nachemson A., 'The load on lumbar discs in different positions of the body'. Clin Orthop, 1966. 45: p. 107-22. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36202 | - |
| dc.description.abstract | 椎弓足骨螺絲在脊椎外科手術中廣泛地被應用。從臨床上發現,病人在手術後經過一段時間,由於上半身體重的反覆負載,椎弓足骨螺絲有可能發生斷裂的情形。因此,增加彎曲強度是設計椎弓足骨螺絲的重點之一。
在本研究中設計並製造十種椎弓足骨螺絲,利用生物力學測試與有限元素分析兩種方法來評估這些椎弓足骨螺絲的彎曲強度。在生物力學測試部分,把椎弓足骨螺絲分別鎖入塑膠鋼(高分子聚乙烯 ultrahigh molecular polyethylene)中並且鎖入深度為40mm,測試包括靜態負載降伏測試和反覆負載疲勞測試,記錄每支骨螺絲之降伏強度、勁度、疲勞壽命及多週期勁度。在有限元素分析部分,利用ANSYS套裝軟體建立椎弓足骨螺絲之三維有限元素分析模型,然後模擬生物力學測試之情況,有限元素分析模型包括椎弓足骨螺絲和塑膠鋼圓柱,在塑膠鋼上施予點力220N並且把螺絲頭邊緣完全拘束住,椎弓足骨螺絲與塑膠鋼之界面均為接觸界面,經有限元素分析運算過程後會得到最大張應力、最大位移量和總應變能,然後評估有限元素分析模型的收斂性並且探討生物力學測試與有限元素分析之相關性。 由生物力學測試結果中,同一內徑之椎弓足骨螺絲,其錐度長度越長者,其降伏強度、勁度、多週期勁度與疲勞壽命均越大。圓錐形骨螺絲的彎曲強度性能均比圓柱形骨螺絲來的好,且增加內徑可以增加彎曲強度性能。在有限元素分析結果中,同一內徑之椎弓足骨螺絲,其錐度長度越長者,最大張應力、最大位移量,總應變能均越小。較大內徑的圓錐形骨螺絲有較小的最大張應力、最大位移量和總應變能。全部的有限元素分析模型都已收斂。在生物力學測試和有限元素分析之相關性分析中,有限元素分析的最大位移量或總應變能與降伏強度之相關性高達–0.914,而有限元素分析中的最大張應力與疲勞壽命的對數之相關性高達–0.928。最後,在本研究中所建立的有限元素分析模型可以反應出生物力學測試之結果,此可用來幫助臨床醫師為病人選擇最適當的固定器。 | zh_TW |
| dc.description.abstract | Pedicle screws have been used popularly in spinal surgery. In clinical point of view, the pedicle screw may break after a short span of the surgical operation because of cyclic loading of upper body weight. Therefore, designing the pedicle screw with a good bending strength is becoming an important issue.
Ten types of pedicle screws were designed and manufactured in this study. The bending strength of those pedicle screws was investigated by biomechanical tests and finite element analysis. In biomechanical tests, the pedicle screws were inserted into the ultrahigh molecular polyethylene cylinder and the insertion length of pedicle screw was 40 mm. Static-load yielding tests and cyclic-load fatigue tests were conducted. The yielding load, stiffness, fatigue life, and multi-cycle stiffness of each screw were recorded. In finite element analysis, three-dimensional finite element models were established by ANSYS to simulate the biomechanical tests. The finite element models consisted of the pedicle screw and polyethylene cylinder. A point load of 220 N was applied on the polyethylene cylinder and the peripheral margin of the screw head was fully constrained. The interfaces between pedicle screw and polyethylene cylinder were contact. In post processing, the maximal tensile stress, maximal deflection, and total strain energy of finite element models were derived. The convergent study of finite element models was evaluated and the correlation study between biomechanical tests and finite element analysis was assessed. From the results of biomechanical tests, the screw with larger taper length has higher yielding strength, stiffness, multi-cycles stiffness, and fatigue life. The conical screw has higher bending strength performance than the cylindrical screw. Increasing the inner diameter could increase the bending strength. From the results of finite element analysis, the screw with larger taper length has smaller maximal tensile stress, maximal deflection, and total strain energy. The conical screw with larger inner diameter has smaller maximal tensile stress, maximal deflection, and total strain energy. All of the finite element models were convergent. In correlation study, the maximal deflection or total strain energy in finite element analysis was closely related to the yielding strength with a high correlation coefficient of –0.914. The maximal tensile stress in finite element simulation was closely related to the logarithm of fatigue life with a high correlation coefficient of –0.928. In conclusion, developing the finite element models in this study could be used to reflect the results of biomechanical tests. This result can assist surgeons in selecting suitable devices for patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:53:41Z (GMT). No. of bitstreams: 1 ntu-94-R92548039-1.pdf: 4111498 bytes, checksum: 8443d1eccc7c39c602904760ef292dc9 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要 ……………………………..…………..………………………………Ⅰ
英文摘要 ……………………………………..………..…………………………Ⅱ 誌 謝 ……………………………………..………..…………………………Ⅲ 目 錄 ……………………………………..…………..……………………… Ⅳ 表 次 ……………………………………..………..…………………………Ⅵ 圖 次 ………………………………………..……..…………………………Ⅶ 符號索引 ……………………………………..………..…………………………Ⅹ 第一章 序論 ……………………………..…………..………………………….1 1.1 研究動機與目的……………….……..………..………………………...1 1.2 簡介脊椎基本構造…………………..………...………………………...2 1.3 脊椎病因及診斷……………..………………..………………………...4 1.4 簡介椎弓足骨螺絲及其歷史…………..……..………………………...5 1.5 椎弓足骨螺絲之幾何及材料介紹………..…..………………………...6 1.6 文獻回顧………………………………..……..………………………...8 1.7 彎曲強度文獻總整理…………………..……..…...……………………12 1.8 本文架構…………………………………..…..………………………...12 第二章 材料與方法 …………………………..………..……………………….14 2.1 研究方法簡介………………………..…………..……………………...14 2.2 生物力學測試………………………...…………..……………………...15 2.2.1 測試用之椎弓足骨螺絲……….……..…..……………………...15 2.2.2 生物力學測試方法…………………….………………………...18 2.2.3 生物力學測試資料處理與定義……….........…………………...23 2.3 有限元素分析……….…………………………..…..…………………...25 2.3.1 簡介有限元素法原理………….........................………………...25 2.3.2 椎弓足骨螺絲之有限元素分析……………….………………...26 2.3.3 有限元素分析之結果後處理……..……….…..………………...31 2.4 彎曲強度數學模型……….………..…………………..……………...…31 第三章 生物力學測試與有限元素分析結果 ………...………..………………..35 3.1 生物力學測試結果………….……..……………………..……………...35 3.1.1 降伏測試結果…………….……..………………..……………... 35 3.1.2 疲勞測試結果……………….…..………………..……………... 40 3.2 有限元素分析結果…………….…………..……………..……………...44 3.3 生物力學測試與有限元素分析之比較………...………..……………...50 3.4 彎曲強度數學模型計算結果…………………...………..……………...52 第四章 綜合討論 ………………….…………..………………..………………54 4.1 降伏測試………………….………..……………………..…….………54 4.2 疲勞測試…………………….……..…………….…..…………………54 4.3 有限元素分析…………………….………..………….…..……………56 4.4 彎曲強度數學模型…………….…………..……………..……………56 4.5 生物力學測試與有限元素分析相關性討論………..………………57 4.6 錐度長度…………………………………………..……………………57 4.7 臨床應用性…………………….………………..…………..….………58 第五章 結論與未來展望 ……….…………………..………………..…………60 5.1 結論………….…………………………..……………………..………... 60 5.2 未來展望……………….……………..………………………..………...60 參考文獻 ………………………………….…………..………………..………...62 作者簡介 ……………………………….……………..…………………..……...65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 錐度 | zh_TW |
| dc.subject | 椎弓足骨螺絲 | zh_TW |
| dc.subject | 生物力學測試 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | Pedicle screw | en |
| dc.subject | Biomechanical test | en |
| dc.subject | Finite element analysis | en |
| dc.subject | Taper | en |
| dc.title | 椎弓足骨螺絲彎曲強度之生物力學測試與有限元素分析 | zh_TW |
| dc.title | Biomechanical Tests and Finite Element Analysis for Bending Strength of Pedicle Screws | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林晉 | |
| dc.contributor.oralexamcommittee | 趙振綱 | |
| dc.subject.keyword | 椎弓足骨螺絲,錐度,生物力學測試,有限元素分析, | zh_TW |
| dc.subject.keyword | Pedicle screw,Taper,Biomechanical test,Finite element analysis, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
