請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36182完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良正 | |
| dc.contributor.author | Hsing-Wei Peng | en |
| dc.contributor.author | 彭星瑋 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:53:12Z | - |
| dc.date.available | 2005-07-28 | |
| dc.date.copyright | 2005-07-28 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | Asmussen, J. C. (1997), “Modal analysis based on the random decrement technique.” Department of Building Technology and Structural Engineering University of Aalborg.
Asmussen, J. C., Ibrahim, S. R, Brincker, R. (1998), “Random decrement: Identification of structures subjected to ambient excitation,” Proceedings of the International Modal Analysis Conference - IMAC, v 2, 914-921. Bedewi, N. E. (1986), “The mathematical foundation of the auto and cross-random decrement techniques and the development of a system identification technique for the detection of structural deterioration,” PH.D. Dissertation , Department of Mechanical Engineering, University of Maryland College Park. Chen, J., Xu, Y. L. (2002), “Identification of modal damping ratios of structures with closely spaced modal frequencies,” Structural Engineering and Mechanics, v 14, n 4, 417-434. Chen, J., Xu, Y. L., Zhang, R.C. (2004), “Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method,” Journal of Wind Engineering and Industrial Aerodynamics, v 92, n 10, 805-827. Cole, H.A. Jr. (1971), “Methods and apparatus for measuring the damping characteristics of a structure,” United States Patent No.3,620,069. Foliente, Greg C. (1995), “Hysteresis modeling of wood joints and structural systems,” Journal of Structural Engineering, v 121, n 6, 1013-1022. Huang, N. E. et al. (1998), “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London, A454, 903-995. Huang, N. E. et al. (2003), “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proceedings of the Royal Society of London, A 459, 2317-2345. Huang, N. E., Shen, Z., Long, S. R. (1999), “A new view of nonlinear water waves: the Hilbert spectrum,” Annual Review of Fluid Mechanics, v 31, 417-457. Ibrahim, S. R. (1983), “Computation of normal modes from identified complex modes,” AIAA Journal, v 21, n 3, p 446-451. Ibrahim, S. R. (1987), “An upper Hessenberg sparse matrix algorithm for modal identification on minicomputers.” Journal of Sound and Vibration, v 113, n 1, p 47-57. Ibrahim, S. R., Asmussen, J. C., Brinker, R. (1998), “Vector triggering random decrement for high identification accuracy,” Journal of Vibration and Acoustics, Transactions of the ASME, v 120, n 4, 970-975. Johnson, E. A. et al. (2000), “A benchmark problem for structural health monitoring and damage detection,” http://wusceel.cive.wustl.edu/asce.shm/benchmarks.htm Lin, W. H., Chopra, A. K. (2002), “Earthquake response of elastic SDF systems with non-linear fluid viscous dampers,” Earthquake Engineering and Structural Dynamics, v 31, n 9, 1623-1642. Loh, C. H., Wu, T. C., Huang, N. E. (2001), “Application of EMD+HHT method to identify the dynamic properties of structures,” BSSA, SPECIAL ISSUE OF CHI-CHI EARTHQUAKE, v 91, n 5, 1339-1357. Lu, S., Ju, K.H., Chon, K.H. (2001), “A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry,” IEEE Transactions on Biomedical Engineering, v 48, n 10, 1116-1124. Rilling, G. et al. “On empirical mode decomposition and its algorithms,” http://perso.ens-lyon.fr/patrick.flandrin/emd.html Safak, E. (1991), “Identification of linear structures using discrete-time filters,” ASCE Journal, ST8. Salvino, L. M. (2000), “Empirical mode analysis of structural response and damping,” Proceedings of the International Modal Analysis Conference - IMAC, v 1, 503-509. Satake, N., Suda, K., Arakawa, T., Sasaki, A., Tamura, Y. (2003), “Damping evaluation using full-scale data of buildings in Japan,” Journal of Structural Engineering, v 129, n 4, 470-477. Suda, K., Satake, N., Ono, J., Sasaki, A. (1996), “Damping properties of buildings in Japan,” Journal of Wind Engineering and Industrial Aerodynamics, v 59, n 2-3, Structural Damping, 383-392. Terenzi, Gloria (1999), “Dynamics of SDOF systems with nonlinear viscous damping,” Journal of Engineering Mechanics, v 125, n 8, 956-963. Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., Cook, M. F. (1982), “A mathematical basis for the random decrement vibration signature analysis technique,” Journal of mechanical design, v 104, 307-313. Xu, Y. L., Chen, S. W., Zhang, R.C. (2003), “Modal identification of Di Wang Building under Typhoon York using the Hilbert-Huang transform method,” Structural Design of Tall Buildings, v 12, n 1, 21-47. Xu, Y. L., Chen, S. W., Zhang, R.C. (2003), “Hilbert-Huang based approach for structural damage detection,” Journal of Engineering Mechanics, v 130, n 1, 85-95. Yang, J. N., Lei, Y. (2000), “System identification of linear structures using Hilbert transform and empirical mode decomposition,” Proceedings of the International Modal Analysis Conference - IMAC, v 1, 213-219. Yang, J. N., Lei, Y., Lin, S, Huang, N. E. (2004), “Identification of natural frequencies and dampings of in situ tall buildings using ambient wind vibration data,” Journal of Engineering Mechanics, v 130, n 5, 570-577. Yang, J. N., Lei, Y., Pan, S., Huang, N. E. (2003a), “System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: Normal modes,” Earthquake Engineering and Structural Dynamics, v 32, n 9, 1443-1467. Yang, J. N., Lei, Y., Pan, S., Huang, N. E. (2003b), “System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes,” Earthquake Engineering and Structural Dynamics, v 32, n 10, 1533-1554. Yang, J. N., Lei, Y., Lin, S., Huang, N. (2004), “Hilbert-Huang based approach for structural damage detection,” Journal of Engineering Mechanics, v 130, n 1, 85-95. 黃烔憲、蔡益超、葉錦勳 (1998), 「隨機遞減法在建築物微振時間域系統參數識別之應用」, 中國土木水利工程學刊,第十卷,第三期,第537-547頁。 趙清風 (2001), 「控制工程初階 MATLAB Simulink」, 全華科技圖書股份有限公司。 李國強、李杰 (2002), 「工程結構動力檢測理論與應用」, 北京:科學出版社。 陳振華、黃烔憲、楊永斌 (2003), 「高速公路高架橋樑之微動量測與分析」, 結構工程,第十八卷,第二期,第30-48頁。 劉醇宇 (2003), 「微振量測於建立建築物基本週期經驗公式及進行耐震評估之應用」, 國立台灣大學土木工程學研究所博士論文,呂良正教授指導。 林智勇 (2004), 「利用微振實驗資料識別橋樑及建築物之動力參數」, 國立台灣大學土木工程學研究所碩士論文,呂良正教授指導。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36182 | - |
| dc.description.abstract | 本文主要利用Hilbert-Hung Transform ( HHT ) 之技術,以識別線性與非線性結構系統之動力參數。由Huang, N. E. et al. (1998)提出之HHT具有對非線性與非穩定性資料的處理能力與較高之適用性(可用於線性或非線性系統),其主要包含兩部分之處理過程:(1) 經驗模態分離 ( empirical mode decomposition ):可將訊號分離成數個固有模態 ( intrinsic mode decomposition ),而每個IMF均具有良好的Hilbert transform之特性,並配合頻率分離準則,可對於一般含雜訊之資料擷取出屬於結構反應之部分,使不屬於結構頻率範圍之高、低頻雜訊排除,增加識別結果的正確性。(2) 希爾伯特轉換 ( Hilbert transform ):可獲得希爾伯特頻譜,其振幅具有時間軸與頻率軸之變化,由此建立訊號之即時頻率對時間關係。
本文在線性系統識別方面,利用HHT技術建立對微振資料與強震資料之識別流程,以求取結構各模態之反應、基本振動頻率、阻尼比,並分別討論有無雜訊影響時,HHT識別法與一般常用識別方法 ( ITD、ARMA ) 之結果討論與比較。在非線性系統識別方面,則利用HHT技術能擷取結構模態反應與計算即時頻率兩項特性,以獲得時變性、非線性結構系統之頻率變化,得知結構產生破壞與進入非線性行為之時間。 在線性系統識別之應用方面,使用台北地區與台中、南投地區鋼構與鋼筋混凝土建築物之微振量測資料,以HHT識別其阻尼比與基本振動頻率,並與文獻結果(林智勇 2004)比較,以討論鋼構建築物與RC建築物其阻尼比、頻率、週期、建物高度之相關性與統計數據等。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:53:12Z (GMT). No. of bitstreams: 1 ntu-94-R92521211-1.pdf: 3900016 bytes, checksum: 464da9f334c9c104e2c4a0dd65487083 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 導論..........1
1.1 研究動機與目的..........1 1.2 研究內容..........2 第二章 Hilbert-Huang Transform之原理與實作..........5 2.1 經驗模態分離..........5 2.2 希爾伯特頻譜..........8 2.3 希爾伯特阻尼頻譜..........10 2.4 局部篩選過程..........11 2.5 使用局部篩選過程與改進後頻率分離準則之比較..........15 2.5.1 相關文獻說明..........15 2.5.2 改進後之頻率分離準則..........16 2.6 使用局部篩選過程與改進後頻率分離準則之比較..........17 第三章 常用識別方法之理論與比較..........31 3.1 隨機遞減法..........32 3.1.1 隨機遞減特徵曲線..........32 3.1.2 啟動條件..........33 3.2 Ibrahim時域識別法..........37 3.2.1 Ibrahim時域識別法之理論說明..........37 3.2.2 實際應用上參數之選擇考量..........41 3.3 快速富利葉轉換..........43 3.4 ARMA識別法..........45 3.5 小結..........48 第四章 線性結構系統識別..........55 4.1 線性結構在微振下之識別流程..........55 4.1.1 多自由度系統受脈衝力之模態反應..........56 4.1.2 使用EMD擷取模態反應..........57 4.1.3 使用Hilbert transform識別模態參數..........58 4.1.4 模擬範例與識別結果..........60 4.2 模擬微振資料之識別結果..........61 4.2.1 模擬範例一..........61 4.2.2 模擬範例二..........62 4.3 線性結構受強震下之識別流程..........64 4.3.1 僅由輸出歷時識別結構動力參數..........65 4.3.2 由輸出、輸入歷時識別結構動力參數..........65 4.4 模擬強震資料之識別結果..........67 4.4.1 模擬範例一..........68 4.4.2 模擬範例二..........68 4.5 小結..........69 第五章 非線性結構系統識別..........113 5.1 時變性系統識別..........113 5.1.1 單自由度..........114 5.1.1.1 地震歷時..........114 5.1.1.2 微振動..........116 5.1.2 多自由度..........117 5.2 非線性結構系統識別..........118 5.2.1 雙線性模型..........118 5.1.1.1 簡諧外力..........119 5.1.1.2 地震歷時..........119 5.2.2 Bouc-Wen模型..........120 5.1.1.1 簡諧外力..........121 5.1.1.2 地震歷時..........122 5.3 非線性黏滯性阻尼之識別..........123 5.3.1 簡諧外力..........124 5.3.2 地震歷時..........125 第六章 微振資料實例分析..........189 6.1 文獻回顧..........189 6.2 微振量測方式與資料處理..........190 6.3 台北30棟鋼構建物之識別結果..........191 6.4 台北45棟鋼筋混凝土建物之識別結果..........192 6.5 台中、南投35棟鋼筋混凝土建物之識別結果..........193 6.6 小結..........194 6.6.1 HHT與ARMA識別結果比較..........194 6.6.2 台北與台中南投鋼筋混凝土建物之識別結果比較..........195 6.6.3 鋼構與RC建物之識別結果比較..........196 第七章 結論與展望..........225 7.1 結論..........225 7.2 未來展望..........227 參考文獻..........229 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非線性動力系統 | zh_TW |
| dc.subject | 系統識別 | zh_TW |
| dc.subject | 經驗模態 | zh_TW |
| dc.subject | 希爾伯特 | zh_TW |
| dc.subject | Hilbert | en |
| dc.subject | HHT | en |
| dc.subject | nonlinear system | en |
| dc.subject | system identification | en |
| dc.subject | EMD | en |
| dc.title | HHT於線性與非線性動力系統識別之應用 | zh_TW |
| dc.title | Application of Hilbert-Huang Transform to the Identification of Linear and Nonlinear Dynamic Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅俊雄,李有豐,郭世榮 | |
| dc.subject.keyword | 系統識別,非線性動力系統,希爾伯特,經驗模態, | zh_TW |
| dc.subject.keyword | HHT,EMD,Hilbert,system identification,nonlinear system, | en |
| dc.relation.page | 233 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
