請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36161
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳光鐘,李世光 | |
dc.contributor.author | Pei-Ting Chou | en |
dc.contributor.author | 周佩廷 | zh_TW |
dc.date.accessioned | 2021-06-13T07:52:42Z | - |
dc.date.available | 2005-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-25 | |
dc.identifier.citation | Abbe, E., “Betrage zur theorie der microscope und der microscopischen wahrehmung,” Anat. Entw. Mech,, 413, 1873.
Astilean, S., and et al., “Light transmission through metallic channels much smaller than the wavelength,” Opt. Comm., 175,265, 2000. Bailey, T. C., Willson, C. G., and et al., “Step and flash imprint lithography: an efficient nanoscale printing technology,” J. Pho. Sci. Tech., 15, 481, 2002. Barnes, W. L., Preist, T. W., Kitson, S. C., and et al., ”Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B, 54, 9, 6227, 1996. Barnes, W. L. and Ebbesen, T. W., “Surface plasmon subwavelength optics,” Nature, 424, 824, 2003. Barnes, W. L., “turning the tables on surface plasmons,” Nature Materials, 3, 588, 2004. Barnes, W. L., Murray, W. A., and et al., “Surface plamon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett., 92, 10, 107401, 2004. Bethe, H. A., “Theory of diffraction by small holes,” Phys. Rev., 66, 163, 1944. Brundrett, D. L., Glytsis, E. N., and Gaylord, T. K., “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings – conical diffraction and antireflection designs,” Appl. Opt., 33, 13, 2695, 1994. Cao, Q. and Lalanne, P., “Negative role of surface plasmons in the transmission of metallic gratings,” Phys. Rev. Lett., 88, 5, 057403, 2002. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., 67 ,21, 3114, 1995. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., “Imprint lithography with 25-nanometer resolution,” Science, 272, 85, 1996a. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., “Nanoimprint lithography,” J. Vac. Soc. Tech. B, 14, 4129, 1996b. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L., and Zhuang, L., “Sub-10 nm imprint lithography and applications,” J. Vac. Soc. Tech. B, 15, 2897, 1997. Chou, S. Y., Keimel, C., and Gu, J., “Ultrafast and direct imprint of nanostructures in silicon,” Nature, 417, 835, 2002. Colburn, M., Willson, C. G., and et al., “Step and flash imprint lithography: a new approach to high resolution patterning,” Prod. SPIE, 3676, 379, 1999. Colburn, M., Willson, C. G., and et al., “Development and advantages of step and flash imprint lithography,” Sol. Tech., 46, 67, 2001. Degiron, A. and Ebbesen, T.W., “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express, 12, 16, 3694, 2004a. Degiron, A., Lezec, H. J., Yamamoto, N., Ebbesen, T.W., “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Comm., 239, 61, 2004b. Degiron, A. and Ebbesen, T.W., “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt., 7, S90, 2005. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., and Wolff, P. A., “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 391, 667, 1998. Garcia-Vidal, F. J., Martin-Moreno, L., Lezec, H. J., and Ebbesen, T. W., “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett., 83, 22, 4500, 2003a. Garcia-Vidal, F. J., Lezec, H. J., and et al., “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett., 90, 21, 213901, 2003b. Gaylord, T. K., and et al., “Analysis and applications of optical diffraction by gratings,” Prod. IEEE, 73, 894, 1985. Ghaemi, H. F., Thio, T., and Grupp, D. E., “Surface plasmons enhance optical transmission through subwavelength holes,” Phy. Rev. B, 58, 6779, 1998. Grupp, D. E., Lezec, H. J., Thio, T., and Ebbesen, T. W., “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater., 11, 10, 862, 1999. Grupp, D. E., Lezec, H. J., and Ebbesen, T. W., “Crucial role of metal surface in enhanced transmission through sub-wavelength apertures,” Appl. Phys. Lett., 77, 1569, 2000. Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, 1988. Hecht, E., OPTICS 4th ed, Addison Wesley, 2002. Hutley, M. C., Diffraction Gratings, Academic Press, 1982. Ishi, T., Fujikata, J., and Ohashi, K., “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Japanese J. Appl. Phys. 44, 4, 170, 2005. Joannopoulos, J. D., Meade, R. D., and Winn J. N., Photonic crystals : molding the flow of light, Princeton University Press, 1995. Johnson, S. G. and Joannopoulos, J. D., Introduction to Photonic Crystals: Bloch’s Theorem, Band Diagrams, and Gaps (But No Defects), MIT, 2003. Kim, T. J., Thio, T., Ebbesen, T. W., Grupp, D. E., and Lezec, H. J., “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett., 24, 256, 1999. Kitson, S. C., Barnes, W. L, Bradberry, G. W., and et al., “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys., 79, 9, 7383, 1996. Kramper, P., Agio, M., Soukoulis, C. M., and et al., “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett., 92, 113903, 2004. Kreiter, M., “Surface plasmon-related resonances on metallic diffraction gratings,” 2000. Martin-Moreno, L., Garcia-Vidal, F. J., and et al., “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett., 90, 16, 167401, 2003. Moreno, E., García-Vidal, F. J., and Martín-Moreno, L., “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B, 69, 121402, 2004. Lezec, H. J., Degiron, A., Devaux, E., Linke, R. A., Martin-Moreno, L., Garcia-Vidal, F. J., and Ebbesen, T. W., ”Beaming light from a subwavelength aperture,” Science, 297, 820, 2002. Lezec, H. J. and Thio, T., “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays.” Opt. Exp, 12, 16, 3629, 2004. Pedrotti, F. L. and Pedrotti, L. S., Introduction to optics 2nd ed, Prentice Hall, 1993. Petit, R., and et al., Electromagnetic theory of gratings, Springer-Verlag, 1980 Popov, E., Neviere, M., Gralak, B., and Tayeb, G., “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33 (2002) Raether, H., Surface Plasmons, Springer Berlin, 1988. Richter, I., Sun, P. C., Xu, F, and et al., ”Design considerations of form birefringent microstructures,” Appl. Opt., 34, 14, 2421, 1995. Ruchhoeft, P., Willson, C. G., and et al., “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Soc. Tech. B, 17, 2965, 1999. Sarrazin, M. and Vineron, J., “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E, 68, 016603, 2003a. Sarrazin, M., and et al., “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B, 67, 085415, 2003b. Tan, H., Gilbertson, A., and Chou, S. Y., “Roller nanoimprint lithography,” J. Vac. Soc. Tech. B, 16, 3926, 1998. Thio, T., Ghaemi, H. F., and Lezec, H. J., “Surface-plasmon-enhanced transmission through holes arrays in Cr film,” JOSAB, 16, 1743, 1999. Thio, T., Pellerin, K. M., and Linke, R. A., “Enhanced light transmission through a single sub-wavelength aperture,” Opt. Lett., 26, 1972, 2001. Treacy, M. M. J., “Dynamical diffraction in metallic optics gratings,” Appl. Phys. Lett., 75, 5, 606, 1999. Treacy, M. M. J., “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B, 66, 195105, 2002. Wang, J., Sun, X., Chen, L., and Chou, S. Y., “Direct nanoimprint of submicron organic light-emitting structures,” Appl. Phys. Lett., 75, 2767, 1999. Wood, R. W., “Anomalous diffraction gratings,” Physical Review, 48, 928, 1935. Xia, Q., Keimel, C., Ge, H., Yu, Z., Wu, W., and Chou, S. Y., “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography,” Appl. Phys. Lett., 83, 4417, 2003. Xia, Y., Whitesides, G. M., “Soft lithography,” Angew. Chem. Int. Ed., 37, 550, 1998. Yoon, J., Lee, G., Song, S. H., and et al., ”Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface,” J. Appl. Phys., 94, 1, 123, 2003. Yu, L., Lin, D., and et al., “Physical origin of directional beaming emitted from a subwavelength slit,” Phy. Rev. B, 71, 041405, 2005. Yu, Z., Schablitsky, S. J., and Chou, S. Y., “Nanoscale GaAs metal–semiconductor -metal photodetectors fabricated using nanoimprint lithography,” Appl. Phys. Lett., 74, 2381, 1999. Yu, Z., and Chou, S. Y., “Triangular profile imprint molds in nanograting fabrication,” Nano Letters, 4, 2, 341, 2004. ELS-7500EX TFE Electron Beam Lithography System Instruction Manual, ELIONIX Inc, 2003. “Lithography,” The International Technology Roadmap for Semiconductors, 2004. “The Intel lithography roadmap,” Intel Technology Journal, 06, 02, 1535766, 2002. http://micro.magnet.fsu.edu/primer/techniques/nearfield/nearfieldintro.html http://www.elionix.co.jp/ http://www.intel.com/ 波寇維茲 (S. Perkowitz)著,林志懋譯,光的故事,貓頭鷹出版社,2002 邱燦賓、施敏,電子束微影技術,科學發展月刊第28卷第6期,2000 柯志忠,奈米球模板技術開發,儀科中心簡訊第六十七期,2005 莊達人, VLSI製造技術, 高立圖書有限公司,2002 黃德歡,改變世界的納米技術,瀛舟出版社,2002 余良彬,指向性傳遞之表面電漿繞射理論、數值模擬與實驗,國立台灣大學應用力學研究所博士論文,2003 林鼎晸,用於奈米雷射直寫儀之浪型次波長結構之模擬與研製,國立台灣大學應用力學研究所碩士論文,2003 陳怡君,介電奈米表面結構與金屬材料之互動所引致指向性出射研究:奈米直寫儀光學頭之創新設計,國立台灣大學應用力學研究所碩士論文,2004 張祐嘉,具抗反射及疏水特性之奈米結構表面設計與先導性製程研究,國立台灣大學應用力學研究所碩士論文,2004 王湧鋒,奈米直寫儀光學頭之奈米壓印製作方法的先導性研究,國立台灣大學應用力學研究所碩士論文,2004 林嘉龍,奈米直寫儀之校準與系統整合,國立台灣大學應用力學研究所碩士論文,2004 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36161 | - |
dc.description.abstract | 光柵耦合為激發表面電漿共振的一種主要方法,本論文基於Ebbesen等人所提出由表面電漿共振引發之異常穿透現象,針對不同材質及表面輪廓形狀的光柵進行研究,以了解其改變對於產生表面電漿共振之影響。並且利用在此研究的發現,期盼能對於奈米直寫儀光學頭的設計及其他相關應用上作出貢獻。
本論文在模擬方面,以嚴格耦合波分析及有限時域差分法計算光柵耦合表面電漿時的反射頻譜及電磁場模態,並且求出不同表面輪廓光柵下的表面電漿色散曲線及耦合效率,我們認為非金屬表面光柵可以視為一等效介質層來處理,而對於金屬表面光柵,我們發現漸變式光柵的表面電漿共振條件異於二維光柵,故在不同光柵深度下,光柵的耦合效率及能隙寬度會有所不同,且在不同波長的入射光之下,電磁場強度的分佈會有所不同,經由以上模擬我們順利得到設計奈米直寫儀光學頭或相關光電元件時的參考資訊。 在實驗方面,則使用電子束微影法製作漸變式光柵,並且配合相關製程可製作金屬及非金屬表面光柵,進而討論奈米直寫儀光學頭之製程。並且配合溼蝕刻方式製造三角形奈米壓印母模,以增加使用奈米壓印技術來製造奈米直寫儀光學頭或其他相關應用之可能性。 | zh_TW |
dc.description.abstract | Grating coupling is a major method to excite surface plasmon resonance; this thesis took the extraordinary transmission phenomenon first proposed by Ebbesen et al. as the starting point to study gratings of different materials and various profiles in order to understand the influence of these changes on surface plasmon resonance. It is anticipated to utilize parameters learned during the course of this research to facilitate the design of nanowriter optical head and other related applications.
In simulations, we use rigorous coupled wave analysis (RCWA) and finite difference time domain (FDTD) to calculate the reflection spectrum and electromagnetic mode of surface plasmons, both of which is coupled by using gratings. The surface plasmon dispersion curve and coupling efficiency under different grating profiles were successfully calculated. We consider the non-metal surface gratings as a homogeneous dielectric layer by using effective medium theory. For metal surface gratings, we found the surface plasmon resonance condition of gradient gratings is different to binary gratings, thus the coupling efficiency and band gap width of gratings under different grating depths will be different. The distribution of electromagnetic field under different wavelength of light will be different. More specifically, the coupling efficiencies and band gap width under different grating depth were found to be different. We can obtain the design criterion of optical head and other optical devices through the above simulations. In experiments, we use electron beam lithography to make the gradient gratings, and produce metal and non-metal surface gratings with proper fabrication process. The fabrication process of nanowriter optical head was then detailed. We also take advantage of wet etching to manufacture the triangular nanoimprint mold with an attempt to reach the mass production goal of nanowriter optical head and other applications by using nanoimprint techniques. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:52:42Z (GMT). No. of bitstreams: 1 ntu-94-R92543049-1.pdf: 9650761 bytes, checksum: 980ad7f9c4a12141e8ccc93fb060bcb7 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Table of Contents
謝誌 I 摘要 V Abstract VI Table of Contents VIII List of Figures XI List of Tables XVI CHAPTER 1 Introduction -1- 1.1 Preface -1- 1.2 Research Background -1- 1.3 Motivation -5- 1.4 Thesis Organization -6- Chapter 2 Literature Review -9- 2.1 The Limit of Traditional Optics -9- 2.1.1 The limitation of diffraction limit -9- 2.1.2 Development and restrictions of near field optics -12- 2.2 Related Paper Review -14- 2.2.1 Extraordinary transmission phenomenon -14- 2.2.2 Directional beaming effect -18- 2.2.3 Debates of the physical mechanism -20- 2.3 Physical Mechanism of Extraordinary Transmission -23- 2.3.1 New explanation of Ebbesen group -23- 2.4 Nanoimprint Lithography -26- 2.4.1 Introduction of nanoimprint -26- 2.4.2 Triangular imprint molds -27- 2.4.3 Nanoimprint and the development of nanowriter -28- 2.5 Photonic Crystal -30- 2.5.1 Introduction of photonic crystal -30- 2.5.2 The beaming effect of photonic crystal waveguide -30- Chap 3 Theory -32- 3.1 Surface Plasmons -32- 3.1.1 From plasmons to surface plasmons -32- 3.1.2 The theory of surface plasmons -33- 3.1.3 The method to excite surface plasmons -35- 3.2 Introduction of gratings -39- 3.2.1 Reflection gratings -39- 3.2.2 The influence of grating profiles to diffraction efficiency -40- 3.2.3 Surface plasmons on gratings -40- 3.2.4 Energy gap of surface plasmons -41- 3.3 Subwavelength Gratings -44- 3.3.1 Analysis of subwavelength structures -44- 3.3.2 Brief introduction of RCWA -47- Ch.4 Simulation -49- 4.1 Optical Properties Simulated by RCWA -50- 4.2 Simulation Results of RCWA -52- 4.2.1 Simulation results of non-metal surface relief gratings -52- 4.2.2 Simulation results of metal surface relief gratings -53- 4.3 Simulations of Surface Plasmon Mode by FDTD -67- Chap 5 Experiments -73- 5.1 Experiment Purpose -73- 5.2 Fabrication of Gradient Gratings -73- 5.2.1 Experimental procedures of e-beam lithography -73- 5.2.2 Fabrication of gradient surface grating by e-beam lithography -77- 5.2.3 Fabrication by holographic lithography -83- 5.3 Fabrication Methods of Optical Head -86- 5.3.1 Double-sided metal optical head -86- 5.3.2 Single-sided non-metal optical head -88- 5.3.3 Fabrication of non-metal optical head by nanoimprint -90- 5.4 Experiment Results -93- 5.4.1 Fabrication of double-sided metal optical head -93- 5.4.2 Fabrication of single-sided non-metal optical head -97- 5.4.3 Fabrication of nanoimprint mold by wet etching -100- 5.5 Verifications of Simulation -104- 5.5.1 Experiment of reflectance spectrum -104- 5.5.2 Experiment of beaming angle -106- Chapter 6 Conclusion and Future Works -110- 6.1 Conclusion -110- 6.2 Future Works -113- References -114- | |
dc.language.iso | en | |
dc.title | 次波長光柵形狀影響表面電漿共振之研究:奈米直寫儀光學頭之開發及相關應用 | zh_TW |
dc.title | The Influence of Subwavelength Grating Profiles to Surface Plasmon Resonance: Development of Nanowriter Optical Head and Related Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高甫仁,管傑雄,葉吉田 | |
dc.subject.keyword | 表面電漿,光柵,奈米直寫儀, | zh_TW |
dc.subject.keyword | surface plasmons,gratings,Nanowriter, | en |
dc.relation.page | 120 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 9.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。