請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36151完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | |
| dc.contributor.author | Jung-Hsien Huang | en |
| dc.contributor.author | 黃榮賢 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:52:28Z | - |
| dc.date.available | 2012-07-28 | |
| dc.date.copyright | 2011-07-28 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-21 | |
| dc.identifier.citation | [1] D. K. Nichols, J. Steven, R. H. Lasseter, J. H. Eto, and H. T. Vollkommer, 'Validation of the CERTS microgrid concept the CEC/CERTS microgrid testbed,' IEEE Power Engineering Society General Meeting, pp. 1-3, 2006.
[2] P. piagi and R. H. Lasseter, 'Autonomous control of microgrids,' IEEE Power Engineering Society General Meeting, pp. 18-22, 2006. [3] M. Chinchilla, S. Arnaltes, and J. C. Burgos, 'Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid,' IEEE Trans. Energy Conversion, Vol. 21, pp.130-135, 2006. [4] F. D. Kanellos and N. D. Hatziargyriou, 'Control of variable speed wind turbines equipped with synchronous or doubly fed induction generators supplying islanded power systems,' IET Renewable Power Generation, Vol. 3, pp. 96-108, 2009. [5] R. Teodorescu and F. Blaabjerg, 'Flexible control of small wind turbines with grid failure detection operating in stand-alone or grid-connected mode,' IEEE Trans. Power Electronics, Vol. 19, pp. 1323-1332, 2004. [6] M. G. Villalva, J. R. Gazoli, and E. R. Filho, 'Comprehensive approach to modeling and simulation of photovoltaic arrays,' IEEE Trans. Power Electronics, Vol. 24, pp. 1198-2008, 2009. [7] C. Carrillo, A. Feijoo, and J. Cidras, 'Comparative study of flywheel systems in an isolated wind plant,' Renewable Energy 34, pp. 890-898, 2009. [8] Y. M. Chen, S. C. Hung, C. S. Cheng, and Y. C. Liu, 'Multiinput inverter for grid-connected hybrid PV/wind power system,' IEEE Trans. Power Electronics, Vol. 22, pp. 1070-1077, 2077. [9] D.-J. Lee and L. Wang, 'Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system, Part I: Time-domain simulations,' IEEE Trans. Energy Conversion, Vol. 23, pp. 311-320, 2008. [10] H. D. Battista, R. J. Mantz, and F. Garelli, 'Power conditioning for a wind-hydrogen energy system,' Journal of Power Sources 155, pp. 478-486, 2006. [11] A. Bilodeau and K. Agbossou, 'Control analysis of renewable energy system with hydrogen storage for residential applications,' Journal of Power Sources 162, pp. 757-764, 2006. [12] J. D. Maclay, J. Brouwer, and G. S. Samuelsen, 'Dynamic analyses of regenerative fuel cell power for potential use in renewable residential applications,' International Journal of Hydrogen Energy 31, pp. 994-1009, 2006. [13] M. J. Khan and M. T. Iqbal, 'Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system,' Renewable Energy 30, pp. 421-439, 2005. [14] J. J. Hwang, W. R. Chang and F. B. Wen, 'Dynamic modeling of a solar hydrogen system under leakage conditions,' International Journal of Hydrogen Energy 33, pp. 3615-3624, 2008. [15] H. Ibrahim, A. Ilinca, and J. Perron, 'Energy storage systems - Characteristic and comparisons,' Renewable and Sustainable Energy Reviews 12, pp. 1221-1250, 2008. [16] B. Richard, 'Energy storage: a nontechnical guide,' PennWell Corporation, 2006. [17] O.C. Onar, M. Uzunoglu, and M.S. Alam, 'Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system,' Journal of Power Sources 161, pp. 707-722, 2006. [18] Hadi Saadat, 'Power system analysis,' 2nd, International Edition, 2004. [19] A. Causebrook, D. J. Atkinson, and A. G. Jack, 'Low Voltage Ride-Through of Large Wind Farms Using Series Dynamic Braking Resistors,' IEEE Trans. Power Systems, pp. 966-975, 2007. [20] J. G. Nielsen and F. Blaabjerg, 'A detailed comparison of system topologies for dynamic voltage restorers,' IEEE Trans. Industry Application, Vol. 41, pp. 1272-1280, 2005. [21] J.F. Conroy and R. Watson, 'Low-voltage ride-through of a full converter wind turbine with permanent generator,' IET Renewable Power Generation, Vol. 1, pp. 182-189, 2007. [22] R Pecen, M. D. Salim, and A. Zora, 'A LabVIEW Based Instrumentation system for a Wind- Solar Hybrid Power Station,' Journal of National Association of Industrial Technology, pp.1-8, 2004. [23] A. S. K. Bin, S. Weixiang, O. K. Seng, S. Ramanathan and L. I-Wern, 'Development of a LabVIEW-based test facility for stand-alone PV systems,' In Proc. of The IEEE International Workshop, Vol. 6, 2006. [24] I. Cvetkovic, T. Thacker, D. Dong, G. Francis, V. Podosinov, D. Boroyevich, F. Wang, R. Burgos, G. Skutt, and J. Lesko, 'Future home uninterruptible renewable energy system with vehicle-to-grid technology,' In Proc. of The IEEE Energy Conversion Congress and Exposition, pp. 2675-2681, 2009. [25] 梁適安,〃交換式電源供應器之理論與實務設計〃,全華科技圖書股份有限公司,2009。 [26] B. M. Wilamowski and X. Li, 'Fuzzy system based maximum power point tracking for PV system,' 28th Annual Conf. of the IEEE Industrial Electronics Society, Vol. 4, pp. 3280-3284 , 2002. [27] Y. C. Kuo , T. J. Liang, and J. F. Chen, 'Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,' IEEE Trans. Industrial Electronics, Vol. 48, pp. 594-601, 2001. [28] KYOCERA Corporation, http://www.kyocerasolar.com.au/pdf/kd210gh_2pu.pdf. [29] 范祐臺,'太陽光電能在通訊設備之系統設計',淡江大學電機工程學系碩士論文,民國93年。 [30] 李思賢,'數位式單相低功率太陽光電能轉換系統',國立中山大學電機工程學系碩士論文,民國92年。 [31] 牛山泉,'風車工學入門 : 從基礎理論到風力發電技術',全華科技圖書股份有限公司,2009。 [32] R. Melício, V. M. F. Mendes, and J. P. S. Catalão, 'Power converter topologies for wind energy conversion systems: integrated modeling, control strategy and performance simulation,' Renew Energy 35, pp. 2165-2174, 2010. [33] 呂學德,'以同時擾動隨機近似法進行風場永磁同步發電機之最大功率追蹤控制',中原大學電機工程學系碩士論文,民國95年。 [34] 姚竺君,'三相併聯型太陽光電能系統模型建立與模擬分析',台灣大學電機工程學系碩士論文,民國99年。 [35] 沈輝、曾祖勤,'太陽能光電技術',五南圖書出版公司,2008。 [36] 黃鎮江,'燃料電池' ,全華科技圖書股份有限公司,2005。 [37] M. J. Khan and M. T. Iqbal, 'Modelling and analysis of electrochemical, thermal, and reactant flow dynamics for a PEM fuel cell system,' Fuel Cells, pp. 463-475, 2005. [38] 黃靖智,'分散式電源串聯型併聯模組之均載控制策略',國立中山大學電機工程學系碩士論文,民國97年。 [39] Horizon Fuel Cell Technology, http://www.horizonfuelcell.com. [40] 黃可龍,王兆翔,劉素琴,'鋰離子電池原理與技術',五南圖書出版公司,2010。 [41] J. M. Tarascon and M. Armand, 'Issues and challenges facing rechargeable lithium batteries,' Nature, Vol. 414, pp. 359-367, 2001. [42] M. W. Verbrugge and P. Liu, 'Electrochemical characterization of high-power lithium ion batteries using triangular voltage and current excitation sources,' Journal Power Sources, pp. 2-8, 2007. [43] 洪裕桓,'智慧型鋰電池管理系統之研製',國立中山大學電機工程學系碩士論文,民國94年。 [44] H. Gualous, D. Bouquain, A. Bertbon, and J. M. Kauffinann, 'Experimental study of supercapacitor serial resistance and capacitance variations with temperature,' Journal of Power Sources 123, pp. 86-93, 2003. [45] 郭昆璋,'超高電容器對混合動力直驅式電動車性能提升的研究',國立台灣大學機械工程學系碩士論文,民國93年。 [46] Maxwell Technologies, http://www.maxwell.com. [47] P. P. Paramita and A. Yazdani, 'A Mathematical Model and Performance Evaluation for a Single-Stage Grid-Connected Photovoltaic(PV) System,' Internation Journal of Emerging Electric Power Systems, Vol. 9, Iss. 6, Article 5, 2008. [48] 梁國堂,'靜態同步補償器控制器參數之設計',國立台灣大學電機工程學系碩士論文,民國97年。 [49] M. Mohan, T. M. Undeland, and W. P. Robbins, 'Power Electronics,' John Wiley and Sons, Inc, 2003. [50] J. F. Conroy and R. Watson, 'Frequency response capability of full converter wind turbine generators in comparison to conventional generation,' IEEE Trans. Power System, Vol. 23, pp. 649-656, 2008. [51] M. Tsili and S. Papathanassiou, 〃A review of grid code technical requirements for wind farms, 〃 IET Renewable Power Generation, Vol. 3, pp. 308-332, 2009. [52] 〃台灣電力股份有限公司再生能源發電系統併聯技術要點〃,民國98年。 [53] C. Abbey and G. Joos, 'Effect of low voltage ride through (LVRT) characteristic on voltage stability,' IEEE Power Engineering Society General Meeting, pp. 2576-2582, 2005. [54] D. Li and H. Zhang, 'A combined protection and control strategy to enhance the LVRT capability of a wind turbine driven by DFIG,' IEEE Power Electronics for Distributed Generation Systems, pp. 703-707, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36151 | - |
| dc.description.abstract | 本文主旨在建立具市電併聯功能的直流微電網模擬測試平台,該系統包含了風力發電機、太陽能光電板與燃料電池等分散式能源,鋰離子電池、超級電容等儲能元件,以及三相市電換流器。
三相市電換流器具備了LVRT(Low Voltage Ride Through)的能力,LVRT的能力能讓分散式電源(微電網)於電力系統故障,導致電壓跌落的期間,分散式電源(微電網)仍能正常運轉。 此模擬測試平台以數學模式描述各分散式電源及儲能元件特性,以軟體Matlab/Simulink建立等效模型,並以軟體LabVIEW建立人機介面,讓使用者能透過畫面清楚掌握分散式電源及儲能元件狀態。 | zh_TW |
| dc.description.abstract | The object of this thesis is to present a DC micro-grid simulation test bed with grid-connected function which consists of wind turbines, photovoltaic (PV) panels and fuel cells as distributed generations, lithium-ion batteries and ultra-capacitors as energy storages, and a three-phase grid-connected inverter.
The three-phase grid-connected inverter is equipped with the LVRT (Low Voltage Ride Through) capability which lets the micro-grid be able to ride through grid faults that bring voltages down to a very low level. This test bed is built by mathematical models in Matlab/Simulink, and the simulation results are showed by human-machine interface in LabVIEW. It is a platform for users to clearly handle the information of the DC micro-grid. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:52:28Z (GMT). No. of bitstreams: 1 ntu-100-R98921067-1.pdf: 2309433 bytes, checksum: d6bdd85198888bc8c0c38a9bb1494b6d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧討論 1 1-3 研究目標 3 1-4 章節摘要 3 第二章 直流微電網於MATLAB/SIMULINK建模與模擬驗證 5 2-1 前言 5 2-2 具最大功率追蹤功能之直流/直流昇壓型電力轉換器 5 2-2-1 昇壓型電力轉換器原理介紹 6 2-2-2 最大功率追蹤技術 9 2-2-2-1 擾動觀察察法 9 2-2-2-2 增量電導法 11 2-2-2-3 分析比較 13 2-2-3 昇壓型電力轉換器控制架構 13 2-3 風力發電 14 2-3-1 風力發電機原理介紹 16 2-3-2 風力發電機數學模型建立 17 2-3-3 風力發電機數學模型模擬驗證 18 2-4 太陽能發電 19 2-4-1 太陽能光電板發電原理介紹 20 2-4-2 太陽能光電板數學模型建立 21 2-4-3 太陽能光電板數學模型模擬驗證 23 2-5 燃料電池 25 2-5-1 燃料電池原理介紹 25 2-5-2 燃料電池數學模型建立 27 2-5-3 燃料電池數學模型模擬驗證 29 2-6 鋰離子電池 31 2-6-1 鋰離子電池原理介紹 33 2-6-2 鋰離子電池數學模型建立 34 2-6-3 鋰離子電池數學模型模擬驗證 35 2-7 超級電容 37 2-7-1 超級電容原理介紹 37 2-7-2 超級電容數學模型建立 38 2-8 直流微電網系統架構與模擬驗證 39 2-8-1 分散式電源發電與負載變動 40 2-8-2 設定時機啟動燃料電池 42 第三章 三相市電換流器於MATLAB/SIMULINK建模 45 3-1 前言 45 3-2 三相市電換流器數學模型 46 3-3 三相脈波寬調變技術 50 3-4 三相市電換流器控制架構 51 第四章 LVRT與MATLAB/SIMULINK模擬驗證 53 4-1 前言 53 4-2 LVRT簡介 53 4-3 各國LVRT規範 55 4-3-1 實功率回復比率 55 4-3-2 併接點過電壓保護 56 4-3-3 虛功電流注入規範 57 4-4 旋轉電機於低電壓所面臨的問題及解決方案 58 4-4-1 併聯補償 59 4-4-2 串聯補償 60 4-4-3 三相市電換流器補償 61 4-5 具LVRT功能之三相市電換流器控制架構 63 4-6 具LVRT功能之三相市電換流器運用於直流微電網之模擬驗證 64 第五章 直流微電網模擬平台之人機介面 68 5-1 前言 68 5-2 人機介面架構 68 5-3 獨立型運轉 71 5-4 併市電型運轉及低電壓警示 75 第六章 結論與未來研究方向 80 6-1 結論 80 6-2 未來研究方向 80 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 儲能元件 | zh_TW |
| dc.subject | 直流微電網 | zh_TW |
| dc.subject | 人機介面 | zh_TW |
| dc.subject | LVRT | zh_TW |
| dc.subject | 三相市電換流器 | zh_TW |
| dc.subject | 分散式電源 | zh_TW |
| dc.subject | three-phase grid-connected inverter | en |
| dc.subject | human-machine interface | en |
| dc.subject | LVRT | en |
| dc.subject | DC micro-grid | en |
| dc.subject | distributed generations | en |
| dc.subject | energy storages | en |
| dc.title | 具LVRT功能之三相市電換流器運用於直流微電網模擬測試平台 | zh_TW |
| dc.title | LVRT Capability Implementation of Three-Phase Grid-Connected Inverter on DC Micro-Grid Test Bed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周至如,吳啟瑞,楊宏澤 | |
| dc.subject.keyword | 直流微電網,分散式電源,儲能元件,三相市電換流器,LVRT,人機介面, | zh_TW |
| dc.subject.keyword | DC micro-grid,distributed generations,energy storages,three-phase grid-connected inverter,LVRT,human-machine interface, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
