Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36145
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬小康
dc.contributor.authorShih-Han Huangen
dc.contributor.author黃詩涵zh_TW
dc.date.accessioned2021-06-13T07:52:20Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation1. 郭博堯,”2004年全球石油情勢分析”2004年五月。
2. 鄭耀宗、楊正光、蘇宗華,”能源期刊,第二十五卷第三期”,1995年七月。
3. 衣寶廉,”燃料電池Fuel Cell-高效、環保的發電方式”,五南圖書出版股份有限公司,2003年四月出版。
4. 鐘國濱,”燃料電池技術”,元智大學燃料電池中心,2005年三月。
5 . James Larminie, Andrew Dicks, “Fuel Cell Systems Explained”, 2003.
6. E. Hontanon, M.J. Escudero,” Optimization of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques”, Journal of Power Sources, 86, pp.363-368, 2000
7. Atul Kumar, Ramana G.. Reddy, “Effect of channel dimensions and shape in the flow-filed distributor on the performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources, 113, pp.11-18, 2003
8. 涂正輝,”質子交換膜燃料電池之三維流道設計與熱質傳分析”,國立成功大學機械工程研究所碩士論文,2003
9. K. Tüber, A. Oedegaard, M. Hermann, C. Hebling, “Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells”, Journal of Power Sources, 131, pp.175-181, 2004
10. Guilin Hu, Jianren Fan, Song Chen, Yongjiang Liu, Kefa Cen, “Three-dimensional numerical analysis of proton exchange membrane fuel cells(PEMFCs) with conventional and interdigitated flow fields”, Journal of Power Sources, 136, pp.1-9, 2004
11. Sukkee Um, C.Y. Wang , “Three-Dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells”, Journal of Power Source,125, pp. 40-51, 2004
12. 林育才、李健倫、王錦文、陳博韓、吳襄帥,”樹枝狀流道之燃料電池性能分析”,2004燃料電池國際研討會會議論文集
13.李佳鴻,”質子交換膜燃料電池流道寬度及操作條件對氧氣濃度分佈之影響研究”,台灣大學機械工程研究所碩士論文,2003
14. Young-Gi Yoon, Win-Yong Lee, Gu-Gon Park, Taw-Hyun Yang, Chang-Soo Kim,”Effects of channel configurations of flow field plates on the performance of a PEMFC”, Electrochimica Acta, 50, pp. 709-712, 2004
15. 詹偉鴻,”質子交換膜燃料電池(PEMFC)之電極模組(MEA)理論模式分析”,台灣大學機械工程研究所碩士論文,2002
16. 李泰佑,”PEMFC之高分子電解薄膜水濃度曲線模擬分析”,台灣大學機械工程研究所碩士論文,2004
17. Wensheng He, Jung S. Yi, and Trung Van Nguyen,”Two-Phase Flow Model of the Cathode of PEM Fuel Cell Using Interdigitated Flow Fields”, AIChE Journal, 46, No.10, 2000
18. Y.M. Ferng, Y.C. Tzang, B.S. Pei, C.C. Sun, A. Su, “Analytic and experimental investigations of a proton exchange membrane fuel cell”, International journal of hydrogen energy, 29, pp.381-391, 2004
19. S.Shimoalee, S.Greenway, D.Spuckler, J.W. Van Zee, “Predicting water and current distribution in a commercial-size PEMFC”, Journal of Power Sources, 135, pp.79–87, 2004
20. N. Rajalakshmi, T.T. Jayanth, R. Thangamuthu, G. Sasikumar, P. Sridhar,K.S. Dhathathreyan,” Water transport characteristics of polymer electro;yte membrane fuel cell”, International Journal of Hydrogen Energy, 29, pp.1009-1014, 2004
21. Sukkee Um, C.Y. Wang, “Three-Dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells”, Journal of Power Source,125, pp.40-51, 2004
22. Dagon, G, “Flow and Transportation in Porous Formations”, Springer-Verlag, 1989
23. CFD-ACE, CFD Research Corporation, Alabama, USA, 2002.
24. Vladimir Gurau, Hongtan Liu, and Sadik Kakac, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells”, AIChE Journal, 44, pp.2410-2422, 1998.
25. J. P. Van Doormaal and F. D. Raithby, “Enhancements of the SIMPLE method for tredicting incompressible fluid flows”, Numerical Heat Transfer, 7, pp.147-163, 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36145-
dc.description.abstract近年來石油耗竭以及環境污染的問題已被廣泛的討論,加上二氧化碳的排放逐年增加,全球暖化造成氣候異常的問題十分嚴重;人類爲永續生存,必須找尋一種乾淨無污染的新能源,然而質子交換膜燃料電池利用氫氣與氧氣透過觸媒無污染的產生電力,勢必在未來發電中佔有一席之地。
本研究是透過套裝軟體模擬質子交換膜燃料電池在不同流道及流道尺寸下,對於燃料電池之影響,並討論濃度場、壓力場、速度場、溫度場、電流密度以及功的改變。流道部份則選擇較常見的蜿蜒型流道及近來發現更有效率的指叉型流道作為改變流道尺寸的基礎,由於蜿蜒型流道之燃料電池是透過擴散效應將反應氣體傳輸至觸媒層發生反應;指叉型流道則是因為流道設計之特色,強迫反應氣體通過觸媒層,兩種流道氣體傳輸方式極為不同。流道尺寸方面,則是固定流道數目,改變流道之寬度、深度由0.3mm變化至1.0mm,並繪製燃料電池性能曲線(I-V Curve),藉此曲線判斷高電流密度下效率較佳的尺寸是否仍然能夠維持較高的電位,並分別找出蜿蜒型流道和指叉型流道的最佳化尺寸。
zh_TW
dc.description.abstractRecently the increasing energy price and the emission of greenhouse gases have become the major issues. A stack of fuel cells can produce electricity by converting hydrogen and oxygen into water, producing electricity in the process, which can be used to drive a motor to have a power work. The advantage of fuel cells is that they produce very little CO2, which causes global warming or nitrogen oxides that pollute the atmosphere. The PEMFC is one of them can convert hydrogen and oxygen into electric power without any pollution.
The study is to simulate the performance of PEMFC in different flow field and flow channel size by the software. The suitable of flow channel in PEMFC is one of the major concerning design parameters. The serpentine flow channel was popular in the design of traditional flow fields. However, the interdigitated flow channel is found to be a more efficient way in recent years. The effects of the concentration, pressure, velocity, temperature, and current density profiles on the flow fields will be studied in details. The serpentine flow field and interdigitated flow field are chosen for this study due to their different fluid transportation mechanisms. The serpentine flow channel drives the fluid to generate chemical reaction by diffusion; on the other hand, the reactant gases are forced from flow channel and into catalyst layer by interdigitated flow channel. The performance of the flow channel design will be evaluated by current-voltage (I-V) curves in the range of 0.3mm to 1.0mm for the channel depth and width.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:52:20Z (GMT). No. of bitstreams: 1
ntu-94-R92522113-1.pdf: 2001150 bytes, checksum: 93f8d73b7c6e93d476d4ebd84fa8a684 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章 導論 1
1.1 前言 1
1.2燃料電池分類 2
1.3燃料電池基本原理及特性 4
1.4高分子薄膜燃料電池(PEMFC) 5
1.5 燃料電池性能曲線(I-V CURVE) 7
1.6文獻回顧 8
1.7 研究目的 16
第二章 理論模式之建立 17
2.1 基本假設 17
2.2 統御方程式 17
2.2.1 質量(連續)方程式 18
2.2.2動量守衡方程式 18
2.2.3能量守衡方程式 19
2.2.4成份守衡方程式 20
2.2.5 電流守衡方程式 22
2.3 CFD-RC套裝軟體應用 24
2.4 有限體積法 24
2.4.1 對流項(Convection term) 25
2.4.2 擴散項(Diffusion term) 26
2.4.3 源項(Source) 26
2.4.4 有限差分方程式(Finite Difference Equations) 27
2.4.5 SIMPLEC空 27
2.5 幾何模型 30
第三章 邊界及初使條件 32
3.1 邊界條件 32
3.2 初使條件 33
3.3 網格獨立測試 34
3.3.1 蜿蜒式流道格點測試分析 34
3.2.2 指叉式流道格點測試分析 35
第四章 結果與討論 37
4.1 流道尺寸對於電流密度的影響 38
4.1.1 指叉型流道尺寸對於電流密度之影響 38
4.1.2 蜿蜒型流道尺寸對於電流密度之影響 38
4.2尺寸變化對於燃料電池之影響 40
4.2.1 指叉型流道尺寸變化對於燃料電池之影響 40
4.2.2 蜿蜒型流道尺寸變化對於燃料電池之影響 42
4.3 電流密度極化曲線的變化對於燃料電池的影響 44
4.3.1 指叉型流道之電流密度變化對於燃料電池的影響 45
4.3.2 蜿蜒型流道之電流密度變化對於燃料電池的影響 46
4.3.3 指叉型流道與蜿蜒型流道之電流密度極化曲線比較 47
4.4 燃料電池流道尺寸對於功之變化 48
第五章 結論與建議 50
5.1 結論 50
5.2 建議 53
參考文獻 54
dc.language.isozh-TW
dc.subject蜿蜒型流道zh_TW
dc.subject質子交換膜燃料電池zh_TW
dc.subject指叉型流道zh_TW
dc.subjectserpentine flow fielden
dc.subjectPEMFCen
dc.subjectinterdigitated flow fielden
dc.title質子交換膜燃料電池之流道模擬分析zh_TW
dc.titleTheoretical Study of Flow Field in Proton Exchange Membrane Fuel Cells (PEMFCs)en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王興華,張克勤
dc.subject.keyword質子交換膜燃料電池,指叉型流道,蜿蜒型流道,zh_TW
dc.subject.keywordPEMFC,interdigitated flow field,serpentine flow field,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved