請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36060
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宏智 | |
dc.contributor.author | Hsi-Tien Liao | en |
dc.contributor.author | 廖錫田 | zh_TW |
dc.date.accessioned | 2021-06-13T07:50:34Z | - |
dc.date.available | 2005-07-28 | |
dc.date.copyright | 2005-07-28 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-25 | |
dc.identifier.citation | 參考文獻
[1] Phoenix Silicon International Corporation, established in 1997, http://www.psi.com.tw. [2] John Reche, “The Path to Wafer Level Packaging”, IEEE/CPMT Meeting Santa Clara (CA), 5/10/2000. [3] 廖伯佑、李盈壕,“半導體製程用濕式化學品的發展趨勢”,伊默克化學科技,2004。 [4] G. G. Stoney, “The Tension of Thin Metallic Film Deposited by Electrolysis”, Proc. R. Soc., A 82, pp. 172-186, 1909. [5] John Nichelsen, “Trends in Advanced Packaging”, Central & Southern Regions, ASE Group, 2004. [6] Wangping Sun, Z. J. Pei and G. R. Fisher, “Fine grinding of silicon wafers: a mathematical model for the wafer shape”, International Journal of Machine Tools & Manufacture, v 44, pp. 707-716, 2004. [7] 凃岐旭,“矽晶圓輪磨技術效能提昇之應用分析”,碩士論文,國立台灣大學機械工程學研究所,2004。 [8] “High Precision Single Wafer Wet Etch Processing”, Solid State Equipment Corporation, 2004, http://www.ssecusa.com. [9] NCKU Micro-Nano Technology Center/Southern Region MEMS Center, 2005. [10] 許樹恩、吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會,1993。 [11] 李建誼,“光學鏡片成型後表面殘留應力層之檢測”,碩士論文,國立中興大學機械工程學研究所,2002。 [12] F. Shimura, “Semiconductor Silicon Crystal Technology”, San Diego: Academic Press, 1989. [13] C. Chen and M. Leipold, “Fracture Toughness of Silicon”, American Ceramic Society Bulletin, v 59, n 4, 1980, pp. 469-472. [14] P. B. Hirsch, “脆性-延性遷移の基礎”, 日本学会会报, v 29, n1, pp. 5-12, 1990. [15] T. C. Wu, N. Morita, and Y. Yoshida, “Study on Grinding of Single Crystalline Silicon (2nd report, The Effect of Temperature and Load Rate on Brittle-Ductile Transition)”, 日本機械学会論文集(C編)58卷555号, 1992. [16] B. Lawn and M. Swain, “Microfracture Beneath Point Indentations in Brittle Solids”, Journal of Material Science, v 10, pp. 113-122, 1975. [17] D. E. Kim and N. P. Suh, “Plastic Deformation of Silicon During Contact Sliding at Ambient Temperature”, Journal of Materials Science, v 28, pp. 3895-3899, 1993. [18] B. Lawn and A.G. Evans, “A Model for Crack Initiation in Elastic/Plastic Indentation Fields”, Journal of Materials Science, v 12, pp. 2195-2199, 1977. [19] M. Swain, “Microfracture About Scratches in Brittle Solids”, Proceedings of the Royal Society of London, Series A, v 366, pp. 575-597, 1979. [20] W. Cheng, E. Ling and L. Finnie, “Median Cracking of Brittle Solids Due to Scribing with Sharp Indenters”, Journal of the American Ceramic Society, v 73, pp. 580-586, 1990. [21] H. P. Kirchner, “Comparison of Single Point and Multipoint Grinding Damage in Glass,” Journal of the American Ceramic Society, v 67, pp. 347-353, 1984. [22] Y. Gogotsi, G. Zhou, S. S. Ku and S. Cetinkunt, “Raman Micro spectroscopy Analysis of Pressure Induced Metallization in Scratching of Silicon”, Semiconductor Science And Technology, v 16, pp. 345-352, 2001. [23] Y. L. Tsai and J. J. Jr. Mecholsky, “Fractal Fracture of Single Crystal Silicon”, Journal of Materials Research, v 6, No. 6, pp. 1248-1263, 1991. [24] Z. J. Pei, S. R. Billingsley and S. Miura, “Grinding Induced Subsurface Cracks in Silicon Wafers”, International Journal of Machine Tools & Manufacture, v 39, pp. 1103-1116, 1999. [25] L Wei and H. S. Ahn, “Manufacturing Science and Engineering”, v 68, pp.923-926, 1994. [26] H. K. Xu, Lanhua Wei and Said Jahanmir, “Grinding Force and Micro-crack Density in Abrasive Machining of Silicon Nitride”, J. Mater. Res., v 10, n 12, pp 3204-3208, 1995. [27] T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile Regime Grinding: A New Technology for Machining Brittle Materials”, Journal of Engineering for Industry, Transactions of the ASME, v 113, pp.184-189, 1991. [28] T. Nakasuji, S. Kodera, S. Hara, H. Matsunaga, N. Ikawa and S. Shimada, “Diamond turning of brittle materials for optical components.” Annals of the CIRP, v 39, n1, pp. 89-92, 1990. [29] K. E. Puttick, L. C. Whitmore, C. Ycynes and A. E. Gee, Proc. ASPE Spring Topical Meeting on Precision Grinding of Brittle Materials, pp. 82-88, 1996. [30] Z. W. Zhong, “Ductile or Partial Ductile Mode Machining of Brittle Materials”, The International Journal of Advanced Manufacturing Technology, v 21 pp. 579-585, 2003. [31] P. Blake and R. O. Scattergood, “Ductile Regime Machining of Germanium and Silicon”, Journal of the American Ceramic Society, v 73, pp. 949-957, 1990. [32] K. E. Puttick, M. R. Rudman, F. A. Smith, and K. Lindsey, “Single Point Diamond Machining of Glasses”, Proc. Royal Soc., A. 426, pp. 19-30, 1989. [33] B. R. Lawn and D. B. Marshall, “Indentation of Brittle Materials”, Micro-indentation Tech. in Materials Science and Engineering, ASTM STP 889, 1986. [34] T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile Regime Turning Mechanism of Single Crystal Silicon”, Precision Engineering, v 18, pp. 129-137, 1996. [35] S. Malkin and T. W. Hwang, “Grinding Mechanisms for Ceramics”, Annals of the CIRP, v 45, pp. 569-580, 1996. [36] Y. Nakano and K. Ota, “Thermal Deformation of Workpieces During Surface Grinding and Profile Errors of Finished Workpieces”, JSPE 39, pp. 225-229, 1973. [37] Manfred Reiche and Gerrald Wagner, “Wafer Thinning: Techniques for Ultra-thin Wafers”, SEZ USA, 2003. [38] Pat Halahan and Dr. Tony Schraub, “Backgrinding Technologies for Thin-Wafer Production”, Tru-Si, CA, USA, 2005. [39] Mark Hendrix and Scott Drews, “Improvements in Yield by Eliminating Backgrind Defects and Providing Stress Relief with Wet Chemical Etching”, ST, SEZ, USA, 2004. [40] G&N GmbH, Wetterkreuz 35, 91058 Erlangen, Germany, “Nanogrinder MPS NO 940 Operating Manual”, http://www.grinders.de. [41] Autodesk Inc. Taiwan, “Autodesk Inventor User's Manual”, http://www.autodesk.com.tw. [42] S. Milita, “X-ray Rocking-Curve analysis of crystal which buried amorphous layer. Case of ion-implanted silicon”, J. Appl. Cryst. pp. 666-672, 1995. [43] 國家同步幅射研究中心NSRRC (National Synchrotron Radiation Research Center), since 1983, http://www.nsrrc.org.tw. [44] Advanced System Technology Co. Ltd., established in 2002, http://www.ast-taiwan.com.tw. [45] 黃弘毅,“矽晶圓超精密輪磨之研究”,碩士論文,國立台灣大學機械工程學研究所,2003。 [46] 林威延,“矽晶圓微鑽孔之研究”,碩士論文,國立台灣大學機械工程學研究所,2003。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36060 | - |
dc.description.abstract | 摘要
本論文針對新興科技所需矽晶圓(Silicon Wafer)基材Substrate)之薄化製造技術,提出系統性的研究分析,並藉此開發出可供產業界應用的具體模式。由於電子產品的微小化是長年的發展趨勢,過去的足跡及未來的走向均十分明確;如何使最後封裝完成的構件,具備最小的空間與最大積體電路(IC)元件密度將是主要的關鍵技術。在縮小封裝厚度的方法上,IC電子元件在線寬及厚度已到了縮小的極限,為了更進一步實現封裝尺寸的縮小,就有必要減少矽晶片(Chip)的厚度。然而在最終封裝矽晶片厚度變薄之際,相對的矽晶圓直徑由8吋增加到12吋的厚度卻相反的變得更厚,因此有必要開發具有前瞻性的矽晶圓薄化加工技術,才能夠符合先進矽晶片封裝嚴苛工程規格之要求。 本研究首先以矽晶圓延性輪磨加工的理論基礎,延伸其應用於薄化技術的開發。探討輪磨加工所伴隨的殘留應力,以及矽晶圓次表面破壞層(SSD)的問題,終究其薄化目標將碰觸到極限。本研究構思以濕式化學蝕刻的結合,一方面藉以去除次表面破壞層及輪磨加工所衍生的殘留應力,一方面則繼續推進矽晶圓薄化在工程尺寸的極限。本項製程技術的開發除著眼於工程規格之要求外,產業實用性同時是考量的主軸。 本研究針對矽晶圓殘留應力理論模型,及其實驗量測進行深入研究。由矽晶圓薄化後的強度與翹曲狀況,分析殘留應力與各參數之相關性,以達成矽晶片切割與封裝後的高可靠度與產品壽命提昇。同時為確保矽晶圓背面在金屬蒸鍍(Evaporation)後,不致產生剝落(Peeling)現象,矽晶圓薄化時之表面性質與粗度控制是本研究另一發展重點。 關鍵字:矽晶圓、薄化、濕式化學蝕刻、殘留應力。 | zh_TW |
dc.description.abstract | Abstract
Silicon wafers are most extensively used materials for integrated circuit (IC) substrates. As the demand of miniaturization with higher performance standards for electronic devices such as memory cards, smart cards, portable communication devices, and portable computers becomes a clear trend. IC package makes it a requirement to reduce both feature sizes and chip thickness. These requirements render the chip and packaging designers to develop high-speed, ultra-thin chips that utilize less individual area and overall package height to accommodate multiple layers of dense interconnects. The chips that are required to fit into these more intelligent devices have to be remarkably thin, which indicates that silicon chip thinning and stress relief considerations are becoming more significant issues in the backend and assembly areas of semiconductor component manufacturing. In this research, experimental observations are conducted to investigate the effects of various parameters on the surface finish and subsurface damage (SSD) of ground silicon wafers. As there are more technological advancements in stacked chip packaging, backside wafer surface conditioning and stress relief applications become an essential focus. Using wet chemical etching technology for wafer thinning not only provides a means of strength enhancement but allows the user to control the backside wafer surface finish. Various degrees of backside wafer surface finish can be achieved with aqueous chemical etchants. Because the roughened backside wafer surface can be created with the introduced chemicals, it is found that no propagating crystalline defects are accompanied, but rather leaves the wafer in an optimum state for back metal adhesion. Other crucial item in the study is to investigate the residual stress on the backside surface. The technology of wafer thinning is well tested, and the process fine tuned. The goal of compiling a specific database for the thinning process is finally achieved. Keywords: Silicon Wafer, Thinning, Wet Chemical Etching, and Residual Stress. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:50:34Z (GMT). No. of bitstreams: 1 ntu-94-D88522025-1.pdf: 22797195 bytes, checksum: 23e3cee671256b4f650747bf79496cb2 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
摘要 Ⅰ Abstract Ⅱ 目錄 Ⅲ 圖例目錄 Ⅵ 表格目錄 ⅩⅢ 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 7 1.3 研究方法 11 1.4 研究架構 13 第二章 工作原理 14 2.1 輪磨加工原理 14 2.2 濕式化學蝕刻加工原理 18 2.3 物理氣相沉積加工原理 22 2.4 X-ray繞射檢測原理 28 第三章 相關研究文獻與理論回顧 33 3.1 矽晶圓物理性質 33 3.2 壓、刮裂痕試驗 38 3.3 次表面破壞層 43 3.4 延性輪磨加工 45 3.5 殘留應力之成因與影響 52 3.6 矽晶圓薄化製程技術 54 第四章 實驗規劃 58 4.1 輪磨實驗規劃 58 4.2 次表面破壞層量測 61 4.3 濕式化學蝕刻薄化機台研發 63 4.4 X-ray繞射檢測殘留應力 72 4.5 矽晶圓背面金屬蒸鍍與剝落測試 77 第五章 薄化技術分析與討論 79 5.1 表面粗糙度與輪磨參數關係 79 5.2 影響次表面破壞層之因素 82 5.3 濕式化學蝕刻薄化機台功能特性分析 86 5.4 矽晶圓濕式化學薄化後表面性質 94 5.4.1 濕式化學蝕刻後矽晶圓平坦度(TTV)、蝕刻速率分析 94 5.4.2 化學藥液特性分析 95 5.4.3 化學藥液壽命期限與溫度影響分析 98 5.4.4 矽晶圓正表面刮傷與污染防制 101 5.5 殘留應力消除與金屬蒸鍍分析 103 5.5.1 殘留應力消除 103 5.5.2 金屬蒸鍍與剝落性能測試 108 5.6 產業上實用之矽晶圓薄化製程 110 第六章 結論與未來展望 118 6.1 結論 118 6.2 未來展望 119 參考文獻 120 附錄 125 | |
dc.language.iso | zh-TW | |
dc.title | 矽晶圓薄化技術之研究 | zh_TW |
dc.title | Research of Silicon Wafer Thinning Technology | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王能治,賀陳弘,游源成,賴中平,顏家鈺 | |
dc.subject.keyword | 矽晶圓,薄化,濕式化學蝕刻,殘留應力, | zh_TW |
dc.subject.keyword | Silicon Wafer,Thinning,Wet Chemical Etching and Residual Stress., | en |
dc.relation.page | 131 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 22.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。