請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36052
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 段維新 | |
dc.contributor.author | Jian-Rung Chen | en |
dc.contributor.author | 陳建榮 | zh_TW |
dc.date.accessioned | 2021-06-13T07:50:24Z | - |
dc.date.available | 2005-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-25 | |
dc.identifier.citation | 1. Garvie, R. C., Hannink, R.H., and Pascoe, R. T., “Ceramic Steel?” Nature (London), 258, 703-704 (1975).
2. Claussen, N. and Petzow, G., “Whisker-reinforced Oxide Ceramics,” Sci of Ceramics 13, 693702, (1986), ed. By Odier P.; Cabannes, F.; Cales, B. 3. Bechr, P. F., “Toughening Behavior Involving Multiple Mechanism: Whisker Reinforcement and Zirconia Toughening,” J. Am. Ceram. Soc., 9, 651-654, (1987). 4. Ruh, R., Mazdiyasmi, K. S. and Mendiratta, M. G., “Mechanical and Microstructural Charactertization of Mullite and Mullite-SiC-Whisker and ZrO-Toughened-Mullite-SiC-Whisker Composites,” J. Am. Ceram. Soc, 71, 503-512, (1988). 5. Jang, H. M., Moon, J. H. and Jang, C.W., “ Homogeneous Fabrication of Al2O3-ZrO2-Sic Whisker Composite by Surface-induced Coating,” J. Am. Ceram. Soc., 75, 3369, (1992). 6. Tuan, W. H. and Chen, W. R., “Mechanical Properties of Alumina-Zirconia-Silver Composites,” J. Am. Ceram. Soc., 18, 465-469 (1995). 7. Hong, J. S., Huang, X. X. and Guo, J. K., “Toughening Mechanisms and Properties of Mullite Matrix Composites Reinforced by the addition of SiC Particles and Y-TZP,” J. Mater Sci., 31, 4847-4852, (1996). 8. Tuan, W. H. and Brook, R. J., “Processing of Alumina/Nickel Composites,” Eur. Ceram. Soc., 10, 95,-100, (1992). 9. Breval, E., Deng, Z., Chiou, S. and Pantano, C. G., “ Sol-gel Prepared Ni-Alumina Composite Material,” J Mater Sci., 27, 1464, (1992). 10. Chiou, Y. T., “Development of Ceramics by Two Toughening Agents”, Master Thesis, Department of Material Science and Engineering, Taiwan University. (1998). 11. D. J. Green, R. H. Hannink, and M. V. Swain, “Transformation Toughening of Ceramics.” CRC Press. Inc. (1989). 12. M. F. Ashby, F. J. Blunt, and M. Bannister, “Flow Characteristics of highly constrained metal wire,” Acta Metal., 37 (1989) 1847. 13. F. Endogan, and P. F. Joseph, “Toughening of ceramics by circumferential microcracking,” J. Am. Ceram. Soc., 72 (1989)262. 14. K. T. Faber, and A. G. Evans, “Crack deflection processes - . Theory,” Acta Metall., 31 (1983) 565. 15. N. Claussen, “Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase,” J. Am. Ceram. Soc., 59 (1976) 49. 16. F. F. Lange, “Transformation toughening,” J. Mater. Sci., 17 (1982) 225. 17. A. G. Evans, F. F. Lang, Swain, M. V. and A. H. Heuer, “Transformation toughening: an overview,” J. Am. Ceram. Soc., 69 (1986 A). 18. R. M. McMeeking and A. G. Evans, “Mechanics of transformation -toughening in brittle materials,” J. Am. Ceram. Soc., 65 (1982) 242. 19. A. G. Evans and R. M. Cannon, “Toughening of brittle solids by martensitic transformations,” Acta Metall., 31 (1983) 565. 20. N. Claussen, J. Steeb and R. F. Pabst, “Effect of induced microcracking on the fracture toughness of ceramics,” Ceramic Bulletin, 56 (1977)559. 21. M. Rühle, Kraus, A. Strecker, and D. Weidelich, “In-situ observation of phase transformation in ZrO2-containing ceramics,” Advances in Ceramics, Science and Technology of Zirconia II. Ed. By N. Claussen, M. Rühle and A. H. Heuer, American Ceramic Society, Columbus, OH [12] (1985) 256. 22. E. Bischoff and M. Rühle, “Microcrack and transformation toughening of zircoina-containing alumina,” Advances in Ceramics, Vol. 24B, Science and Technology of Zirconia III. ed. by S. Sōmiya, N. Yamamoto, and H. Yanagida, American Ceramic Society, Westerville, OH (1988) 635. 23. M. Rühle, N. Claussen, and A. H. Heuer, “Transformation and microcrack toughening as complementary processes in ZrO2-toughened Al2O3,” J. Am. Ceram. Soc., 69 (1986) 195. 24. A. G. Evan and K. T. Faber, “Toughening of ceramics by circumferential microcracking,” J. Am. Ceram. Soc., 64 (1981) 394. 25. W. T. Tuan, R. Z. Chen, “Interactions between toughening mechanisms: Transformation toughening versus plastic deformation,” J. Mater. Res., 17 [11] (2002) 2921-2928. 26. K. Nihara, “New design concept of structural ceramics-ceramic nanocomposites,” J. Ceram. Soc. Jpn., 99 [10] (1996) 947-982. 27. K. Nihara and A. Nakahira, “Structural ceramic nanocomposites by sintering method:roles of nano-size particles: Towards the 21st Century,” Ceram. Soc. Jpn., 104 [6] (1991) 404-417. 28. R. W. Siegel, “Nanostructured materials – mind over matter,” Nanostructured Mater., 4 [1] (1994) 121-138. 29. G. Pezzotti, V. Sergo, K. Ota, O. Abaizero, N. Muraki, T. Nishida and M. Sakai, ‘Residual stresses and apparent strengthening in ceramic-matrix nanocomposites,” J. Ceram. Soc. Jap., 104 [6] (1996) 479-503. 30. M. Sternitzke, “Review: structural ceramic nanocomposites,” J. Ceram. Soc., 17 (1997) 1061-1082. 31. T. Ohji, Y. K. Jeong, Y. H. Choa, and K. Nihara, “Strengthening and toughening mechanisms of ceramic nanocomposites,” J. Am. Ceram. Soc., 81 [6] (1998) 1453-1460. 32. Stearns, L. C., J. Zhao, and M. P. Harmer, “Processing and microstructure development in Al2O3-SiC nanocomposites,” J. Europ. Ceram. Soc., 10 (1992) 473-477. 33. Stearns, L. C. and M. P. Harmer, “Particle-inhibited grain growth in Al2O3-SiC: I. Experimental results,” J. Am. Ceram. Soc., 79 [12] (1996) 3013-3019. 34. Stearns, L. C. and M. P. Harmer, “Particle-inhibited grain growth in Al2O3-SiC: II. Equilibrium and kinetic analysis,” J. Am. Ceram. Soc., 79 [12] (1996) 3020-3028. 35. Huang, J. Lay and C. J. Lin, “The role of elastic property mismatch in the failure of ceramic composites,” J. Mater. Sci., 52 [6] (1993) 1074-1080. 36. Y. S. Shin, Y. W. Rhee and S. J. Kang, “Experimental evaluation of toughening mechanisms in alumina- zircoina composites,” J. Am. Ceram. Soc. 82 (1999) 1229. 37. S. C. Carniglia, “Reexamination of Experimental Strength-Vs- Grain- Size Data for Ceramics,” J. Am. Ceram. Soc., 55 (1972) 243. 38. D. K. Shetty and A. Virkar, “Determination of the Useful Range of Crack Lengths in Double Torsion Specimens,” J. Am. Ceram. Soc., 61 (1978) 93. 39. B. Mussles, M. V. Swain and N. Claussen, “Dependence of Fracture Toughness of Alumina on Grain Size and Test Technique,” J. Am. Ceram. Soc., 65 [11] (1982) 566-572. 40. S. T. Bemsion and B. R. Lawn, “Role of Interfaced Grain Bridging Fracture in the Crack- Resistance and Strength Properties of Non-Transforming Ceramics,” Acta Metall., 37 [10] (1989) 2659. 41. J. W. Edington, D. J. Rowcliffe and J. L. Henshall, “The Mechanical Properties of Silicon Nitride and Silicon Carbide: I. Material and Strength,” Powder Metall. Int. 7 (1975) 82. 42. E. Ryshkewitch, “Compression Strength of Porous Sintered Alumina and Zirconia,” J. Am. Ceram. Soc., 36 (1953) 65. 43. W. Duckworth, “Discussion of Ryshkewitch Paper,” J. Am. Ceram. Soc. 36 (1953) 68. 44. J. B. Wachtman, “Mechanical Properties of Ceramics: An Introductory Surbey,” Am Ceram, Soc. Bull., 46 [8] (1967) 756. 45. S. K. K, B. J. Appl. Phys., 11 [8] (1960) 338. 46. M. Y. Balshin, Doc. Akadem. Sc. USSR, 67 [5] (1949) 831. 47. N. J. Petch, J. Iron Steel Inst., 174 [1] (1953) 25. 48. J. Soroka, J. Sereda, “Interrelation of Hardness, Modulus of Elasticity, and Porosity in Various Gypsum Systems,” J. Am. Cearm. Soc., 5 [6] (1968) 337. 49. V. S. Kirillov. V. I. Koualenko, V. G. Marinis, I. T. Ostapenko, and V. P. Podtykan, Sov. J. Superhard Mater., 5 (1983) 21. 50. R. W. Rice, S. W. Freiman, R. C. Pohanka, J. J. Mecholsky, Jr. and C. Cm Wu, in “Fracture Mechanics of Ceramics,” 4 (1978) 849. 51. P. A. Evans, R. Stevens and J. G. P. Binner, “Quantitative X-ray Diffraction Analysis of Polymorphic Mixes of Pure Zirconia,” Br. Ceram. Trans. J., 83, 39-43, 1984 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36052 | - |
dc.description.abstract | 氧化鋁陶瓷的機械性質可藉由加入陶瓷顆粒或金屬顆粒來改善,在以往的許多研究中,氧化鋯及鎳都曾被拿來添加在氧化鋁中,但第二相通常都大於5vol.%,本研究則是針對小於5vol.%的第二相添加,來分析其對微結構和機械性質的影響。這些氧化鋁基複合材皆是以無壓燒結的方式,在1600℃下持溫一小時來製備。
本研究主要分為兩個部分:氧化鋁/氧化鋯複合材是在空氣下燒結,而氧化鋁/鎳複合材則是在一氧化碳的氣氛下燒結。在這樣的情況下,兩種複合材燒結後的相對密度都可以達到99%以上。 本研究的撓曲強度是以四點彎曲的實驗來測量,不論在氧化鋁/氧化鋯或是在氧化鋁/鎳複合材中,氧化鋁基地相的晶粒大小都隨著第二相的添加而減小,使得撓曲強度也隨著第二相添加量的增加而明顯的增強。本研究以單邊切槽法(SENB)來量測試片的破壞韌性,其韌性成長的趨勢和撓曲強度一致,皆隨著第二相的添加量增加而增加。 本研究在氧化鋁/鎳複合材的分析上,可以計算出金屬鎳顆粒大小約為45nm,由此可得知此複合材為一奈米複合材,極少量的奈米級鎳顆粒對整體的機械性質可有相當大的影響。 | zh_TW |
dc.description.abstract | Either ceramic or metallic particles can be used to enhance the mechanical properties of alumina. In the present study, zirconia or nickel were added into alumina, and the amount of the second phases was less than 5 vol.%. In the present study, the Al2O3/ZrO2 composites were sintered in air, and the Al2O3/Ni composites in CO atmosphere. The relative density of two composites is higher than 99% after sintering.
The size of Al2O3 grains decreases with the increase of the second phases. In the present analysis, the size of nickel particle in the Al2O3/Ni nanocomposite is only 45 nm. The flexural strength is enhanced due to the microstructure refinement. The fracture toughness was also increased due to the transformation toughening (for Al2O3/ZrO2 composites) and microstructure modification (for Al2O3/Ni nanocomposites). | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:50:24Z (GMT). No. of bitstreams: 1 ntu-94-R92527044-1.pdf: 2717872 bytes, checksum: 4c0243f7f4225943c0a7a25e6758d15a (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 第一章
前言1 第二章 文獻回顧.3 2-1 氧化鋁, 氧化鋯和鎳的基本性質3 2-2陶瓷複合材的各種韌化機制5 2-2-1架橋韌化機構(Crack-bridging toughening mechanism)5 2-2-2裂縫轉移韌化機構(Crack deflection toughening mechanism)6 2-2-3相變化韌化機構(Transformation toughening mechanism) 6 2-2-2-1應力引入相變態韌化機構(Stress-induced transformation toughening)7 2-2-2-2微裂縫韌化機構(Microcrack transformation mechanism) 7 2-2-2-4複合韌化行為(Multiple toughening behavior)8 2-3奈米複合材的基本概念9 2-4微結構對機械性質的影響16 第三章 實驗流程19 3-1 Al2O3/ZrO2複合材19 3-1-1起始材料19 3-1-2試片製備19 3-1-3相鑑定20 3-1-4密度量測21 3-1-5微結構觀察22 3-1-5-1拋光蝕刻面的觀察22 3-1-5-2破斷面觀測23 3-1-5-3晶粒大小量測23 3-1-6機械性質24 3-1-6-1撓曲強度24 3-1-6-2破壞韌性25 3-1-6-3彈性模數26 3-2 Al2O3/Ni複合材27 3-2-1起始材料27 3-2-2試片製備27 3-2-3相鑑定29 3-2-4鎳含量的定量分析29 3-2-5密度量測29 3-2-6微結構觀察29 3-2-6-1拋光腐蝕面29 3-2-6-2破斷面觀察29 3-2-6-3晶粒大小量測30 3-2-7機械性質30 3-1-7-1撓曲強度30 3-1-7-2破壞韌性30 3-1-7-3彈性模數30 第四章 結果與討論31 4-1 Al2O3/t-ZrO2複合材31 4-1-1相鑑定31 4-1-2 Al2O3/t-ZrO2之密度測試33 4-1-3微結構觀察36 4-1-4機械性質40 4-2 Al2O3/Ni 複合材46 4-2-1相鑑定46 4-2-2 Al2O3/Ni複合材密度測試48 4-2-3微結構觀察49 4-2-4機械性質53 4-3綜合討論58 4-3-1燒結氣氛的影響58 4-3-2撓曲強度58 4-3-3破壞韌性60 第五章 結論與建議61 5-1 結論61 5-2 建議62 參考文獻63 | |
dc.language.iso | zh-TW | |
dc.title | 添加微量氧化鋯及鎳對氧化鋁機械性質的影響 | zh_TW |
dc.title | Effect of a small amount ZrO2 or Ni addition on the mechanical properties of Al2O3 | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳榮志,謝宗霖,楊聰仁 | |
dc.subject.keyword | 氧化鋁,氧化鋯,鎳,無壓燒結,複合材,撓曲強度,破壞韌性,奈米複合材, | zh_TW |
dc.subject.keyword | alumina,zirconia,nickel,pressureless sintering,composite,flexural strength,fracture toughness,nanocomposite, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。