Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorWen-Chih Yangen
dc.contributor.author楊溫志zh_TW
dc.date.accessioned2021-06-13T07:50:07Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation[1] S. Banerjee, B. Bhattacharjee and C. Kommareddy, “Scalable Application Layer Multicast”, SIGCOMM 2002.
[2] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee and S. Khuller, “Construction of an efficient overlay multicast infrastructure for realtime applications”, INFOCOM 2003.
[3] E. Brosh and Y. Shavitt, “Approximation and Heuristic Algorithms for Minimum Delay Application-Layer Multicast Trees”, IEEE INFOCOM 2004.
[4] S. Bhattacharyya et al., “A framework for source-specific IP multicast deployment”, Internet Draft, Internet Engineering Task Force, July 2000.
[5] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft, “Pop-Level Access-Link-Level Traffic Dynamics in a Tier-1 POP,” in ACM Sigcomm Internet Measurement Workshop, Nov. 2001.
[6] M. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan, “The minimum latency problem,” in Proc. ACM Symposium on Theory of Computing, May 1994.
[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale and decentralized application-level multicast infrastructure,” IEEE Journal on Selected Areas in communications (JSAC), 2002, to appear.
[8] Jen-Chum Chang and Wanjiun Liao, “Application layer conference tree for multimedia multipoint conferences using Megaco/H.248”, ICME 2001.
[9] A. Christopoulos, C. Huifang Sun Mitsubishi Electr. Res. Labs., “Video transcoding architectures and techniques an overview”, Signal Processing Magazine, IEEE Publication Date: Mar 2003.
[10] Yang-hua Chu, S.G. Tao, S. Seshan and Hui Zhang, “Enabling Conference Applications on the Internet using an Overlay Multicast Architecture”, SIGCOMM 2001.
[11] M. R. Civanlar, G. L. Cash, R. V. Kollarits, B.-B. Paul, C. T. Swain, B. G. Haskell, and D. A. Kapilow, “VideoTalks: A comprehensive multimedia conferencing system,” in Proc. of Packet Video, (Sardinia, Italy), May 2000.
[12] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Request for Comments 2543, Internet Engineering Task Force, Mar. 1999.
[13] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments 2327, Internet Engineering Task Force, Apr. 1998.
[14] M. Handley, J. Crowcroft, C. Bormann, and J. Ott, “The internet multimedia conferencing architecture,” Internet Draft, Internet Engineering Task Force, July 2000.
[15] H. W. Holbrook and D. R. Cheriton, “IP multicast channels: EXPRESS support for large-scale single-source applications,” in SIGCOMM Symposium on Communications Architectures and Protocols, (Cambridge, Massachusetts), August/September 1999.
[16] http://www.cs.columbia.edu/sip/ Session Initiation Protocol (SIP).
[17] http://topology.eecs.umich.edu/inet/.
[18] International Telecommunication Union, “Packet based multimedia communication systems,” Recommendation H.323, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Feb. 1998.
[19] Z. Lei, and ND Georganas, “Video transcoding gateway for wireless video access”, Proc. of IEEE CCECE, May 2003.
[20] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An Application Level Multicast Infrastructure,” in Proc. 3rd Usenix Symposium on Internet Technologies & Systems, March 2001.
[21] J. Rosenberg and H. Schulzrinne, “Models for multi party conferencing in SIP”, Internet Draft, Internet Engineering Task Force, Nov. 2000.
[22] J. Rosenberg, P. Mataga, and H. Schulzrinne, “An application server component architecture for SIP,” Internet Draft, Internet Engineering Task Force, Nov. 2000.
[23] Mihaela van der Schaar, Hayder Radha, “A hybrid temporal-SNR fine-granular scalability for Internet video”, IEEE Trans. Circuits Syst. Video Techn. 11(3):
318-331 (2001).
[24] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Request for Comments 1890, Internet Engineering Task Force, Jan. 1996.
[25] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time applications,” Request for Comments 1889, Internet Engineering Task Force, Jan. 1996.
[26] S.Y. Shi and J. S. Turner, “Multicast routing and bandwidth dimensioning in overlay networks”, IEEE Journal on Selected Areas in Communications 2002
[27] S. Shi and J. Turner, “Routing in overlay multicast networks,” in Proceedings of Infocom, June 2002.
[28] S. Shi, J. Turner, and M. Waldvogel, “Dimensioning server access bandwidth and multicast routing in overlay networks,” in Proceedings of NOSSDAV, June 2001.
[29] K. Singh, G. Nair and H. Schulzrinne, “Centralized Conferencing using SIP”, Proceedings of the 2nd IP-Telephony Workshop 2001.
[30] K. Singh and H. Schulzrinne, “Interworking between SIP/SDP and H.323,” in Proceedings of the 1st IP-Telephony Workshop (IPtel 2000), (Berlin, Germany), Apr. 2000.
[31] H. M. Vin, P. T. Zellweger, D. C. Swinehart, and P. V. Rangan, “Multimedia conferencing in the Etherphone environment,” IEEE Computer, vol. 24, pp. 69–79, Aug. 1991.
[32] Keman Yu; Jiang Li; Shipeng Li, “A novel approach to real time multimedia forwarding over heterogeneous networks”, 2004 IEEE International Symposium on Circuits and Systems, 23-26 May 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36036-
dc.description.abstract在此論文當中,我們提出在一個自SIP延伸出來,加入轉碼伺服器作為多媒體視迅會議的實作架構。有別於過去視迅會議的架構,如星狀架構或完全連結的多點架構,我們使用覆蓋多播樹狀的方式連結每位會議成員,以達成頻寬使用率最小化。在考慮到會議使用者的異質性,我們在樹狀架構中加入轉碼伺服器,執行多媒體資料流的轉碼工作,再傳送給異質網路的不同使用者裝置。我們將覆蓋多播樹的路由方式研擬成最佳化的問題,其中,樹狀架構中的每個點是由行動裝置、一般電腦使用者以及轉碼伺服器所組成。對每一個行動裝置的使用者而言,如何在樹狀架構下尋找適當的連結點,並在異質網路架構下選擇適當的轉碼伺服器,正是我們要解決的問題。並預期在此架構下,能降低視迅會議整體的頻寬使用率,並且能在異質網路使用者之間保有一定的QoS服務品質。我們針對此問題,設計了一個直觀式演算法與網路通訊協定架構。其中,我們採用的SIP的訊息格式作為溝通的網路協定,並與現今的SIP標準相容。我們亦有在異質網路整合的環境下,針對所提出的演算法與網路協定架構作模擬。zh_TW
dc.description.abstractIn this work, we propose a SIP extension for static multimedia conference applications using transcoding proxies. Different from the previous mechanisms that use a star or a fully connected overlay network, we use an overlay multicast tree for each conference group to minimize the bandwidth consumption. To consider the heterogeneity of users, we include transcoding servers in a conference tree to transcode the multimedia streams to the users with the different devices in different networks. We formulate the routing of an overlay multicast tree as an optimization problem. For each end host, our problem is to find the neighbors in the overlay multicast tree and to select the proper transcoding server to serve in the heterogeneous environment. The objective function is to minimize the total bandwidth consumption in each overlay tree, and the constraint is the end-to-end perceived QoS of each heterogeneous end host. We design a heuristic algorithm and a network protocol for the problem. Our protocol uses only SIP messages and is backward compatible with the current SIP standard. We also conduct simulation for our algorithm and protocol in the heterogeneous networks.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:50:07Z (GMT). No. of bitstreams: 1
ntu-94-R92942085-1.pdf: 1882458 bytes, checksum: efc0053e7cffadcc5fe0dfa3f3eb69eb (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract...................................................................................................................... ii
Contents.................................................................................................................... iv
List of Figures........................................................................................................... vi
List of Tables………………………………………………………………………. vii
Chapter 1 Introduction............................................................................................. 1
Chapter 2 Related Works......................................................................................... 5
2.1 SIP Conference Architecture............................................................................. 5
2.2 Application-Layer Multicast Tree..................................................................... 7
Chapter 3 System Architecture............................................................................... 10
3.1 Problem Formulation........................................................................................ 10
3.2 Algorithm Design…………………………………………………………….. 14
3.2.1 Two-Tier Hierarchy........................................................................................ 15
3.2.2 Modified Prim Algorithm.............................................................................. 19
3.3 QoS Bound and Out-Degree Bound................................................................. 23
Chapter 4 Protocol Design....................................................................................... 26
4.1 Initialization….................................................................................................. 26
4.2 Join and Leave…………………….................................................................. 28
4.3 Topology Control.............................................................................................. 30
Chapter 5 Simulation................................................................................................ 33
5.1 Simulation Environment................................................................................... 33
5.1.1 Performance Metrics……………………………………………………….. 34
5.2 Simulation Results............................................................................................ 35
5.2.1 Comparison of different topologies….…………………………………… 35
5.2.2 Simulation results of different numbers of end hosts…..…………………. 36
5.2.3 Simulation results of different numbers of proxies….……………………. 38
5.2.4 Simulation results with different latency bounds…………………………. 40
5.2.5 Comparison of different algorithms….……………………………………. 42
Chapter 6 Conclusions and Future Works......................................................................... 44
Bibliography.......................................................................................................................... 46
dc.language.isoen
dc.title使用轉碼伺服器之SIP視訊會議多播樹狀結構之研究zh_TW
dc.titleOn bandwidth-efficient SIP conference with overlay multicast for heterogeneous users using transcoding proxyen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周承復(Cheng-Fu Chou),楊得年(De-Nian Yang)
dc.subject.keyword視訊會議,轉碼伺服器,樹狀,多播,群播,zh_TW
dc.subject.keywordSIP conference,overlay multicast,transcoding proxy,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved