請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36030完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹幸之(Shing-Jy Tsao) | |
| dc.contributor.author | Yi-Ju Lin | en |
| dc.contributor.author | 林怡朱 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:50:00Z | - |
| dc.date.available | 2008-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | 水野卓、川合正允著. 賴慶亮譯.1997. 菇類的化學.生化學. 國立編譯館.
王伯徹。1990。藥用真菌系列報導(一) 靈芝。食品工業 22(1): 23-30。 李心允. 2003. 以1,3-β-D-聚葡萄糖為指標培養具調節免疫功能之赤芝發酵液. 國立台灣大學食品科技研究所碩士論文。台北,台灣。 李儀儂。2004。培養條件對靈芝菌絲多醣與其(1,3; 1,6)-β-D-聚葡萄醣生成量及性質之影響。國立台灣大學食品科技研究所碩士論文。台北,台灣。 許瑞祥. 1988. 靈芝的奧秘. 正義出版社. 許瑞祥. 1993. 靈芝概論. 萬年出版社. 陳精祥. 1990. 靈芝栽培簡介. 台灣農業 26(2): 54-59 陳精祥. 1993. 鐵杉靈芝不同形態子實體之生產方法. 中華真菌學會會刊 8(1/2): 9-16 陳精祥. 1994. 栽培靈芝水分管理與汽油消滅黏菌. 中華農學會報 168: 85-92. 張小青。2001。靈芝科真菌的分類與應用。第五屆海峽兩岸真菌學術研討會論文集。中華民國真菌學會發行: 42-45。 張東柱、周文能、吳美麗、王也珍。2000。福山大型真菌。行政院農業委員會出版。 傅昭憲. 1991. 台灣三種靈芝菌之培養性狀、病原性與腐朽之研究. 國立台灣大學森林學研究所碩士論文. 台北,台灣。 Bao, X., C. Liu, J. Fang and X. Li. 2001. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr. Res. 332: 67-74. Berovic, M., J. Habijanic, I. Zore, B. Wraber, D. Hodzar, B. Boh and F. Pohleven. 2003. Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. J. Biotech. 103: 77-86. Blashek, W., J. Kasbauer, J. Kraus and G. Franz. 1992. Pythium aphanidermatum: culture, cell-wall composition, and isolation and structure of antitumour storage and solubilised cell-wall (1→3),(1→6)-β-D-glucans. Carbohydr. Res. 231:293-307. Bohn, J. A. and James N. B. 1995.(1→3)-β-D-glucans biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym. 28: 3-14 Borrow A., E. G. Jefferys, R. H. J. Kessell, E. C. Lloyd, P. B. Lloyd and I. S. Nixon. 1961. Can. J. Microbiol. 7: 227 Bu’ Lock, J. D. 1967. Essays in Biosynthesis and Microbiol Development. John Wiley, London, 1967. Chang H. L. 2002. “Study on the molecular weight distribution and content of polysaccharides in Ganoderma of different varieties and cultivations”, the 17th Technological and Vocational Education Conference of R.O.C. Chung, W. T., S. H. Lee, J. D. Kim, Y. S. Park, B. Hwang, S. Y. Lee and H.Y. Lee. 2001. Effect of mycelial culture broth of Ganoderma lucidum on the growth characteristics of human cell lines. J. Biosci. Bioeng. 92(6): 550-555. Demleitner, S., Karaus, J. and Franz, G. 1992. Synthesis and antitumor activity of derivatives of curdlan and lichenan branched at C-6. Carbohydr. Res., 226, 247-252. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substance. Anal. Chem.28(3): 350-356. El-Mekkawy, S., M. R. Meselhy, N. Nakamura, Y. Tezuka, M. Hattori, N. Kauiuchi, K. Shimotohno, T. Kawahata and T. Otake. 1998. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochem. 49(6): 1651-1657. Eschrich, W. 1956. Kallose (Ein kritischer Sammelbericht). Protoplasma 47: 387-530. Evans, N. A. and P. A. Hoyne. 1982. A fluorochrome from aniline blue: structure synthsis and fluorescence properties. Aust. J. Chem. 35: 2571-2575 Evans, N. A., P. A. Hoyne and B. A. Stone. 1984. Characteristics and specificity of the interaction of a flurochrome from aniline blue (sirofluor) with polysaccharides. Carbohydr. Polym. 4: 215-230. Gooday, G.W. 1974. Control of development of excised fruit bodies and stipes of Corrinus cinereus.Trans. Br. Mycol. Soc. 62: 391-399. Hammond, J. B. W. 1978. The role of non-structural carbohydrates in the life cycle of Agaricus bisporus. Mushroom Science X (Part I). Proceedings of the tenth international congress on the science and cultivation of edible fungi, France.: 391-400. Hikino, H., C. Konno, Y. Mirin and T. Hayashi. 1985. Isolation and hypoglycemic acivity of Ganoderans A and B, glycans of Ganoderma lucidum fruit bodies. Planta Med. 46: 339-340. Hsieh, C. and F. C. Yang. 2004. Reusing soy residue for the solid-state fermentation of Ganoderma lucidum. Bioresource Technol. 91: 105-109 Jandaik, C. L. and C.O. Rangad. 1978. Biochemical changes in Pleurotus species with respect to different growth stages. Mushroom Science X (Part I). Proceedings of the Tenth International Congress on the sScience and Cultivation of Edible Fungi, France.: 419-425. Kabir, Y., S. Kimura and T. Tamura. 1988. Dietary effect of Ganoderma lucidum mushroom on blood `pressure and lipid levels in spontaneously hypertensive rats (SHR). J. Nutr. Sci. Vitaminol. 34: 433-438. Kim, Y. S., S. K. Eo, K. W. Oh, C. K. Lee and S. S. Han. 2000. Antiherpetic activities of acidic protein bound polysaccharide isolated from Ganoderma lucidum alone and in combination with interferons. J. Ethnopharmacol. 72: 451-458. Kojima, T., K. Tabata, W. Itoh and T. Yanaki. 1986. Molecular weight dependence of the antitumor activity of Schizophyllan. Agric. Biol. Chem. 50(1): 231-232 Kulicke, W. M., A. I. Lettau and H. Thielking. 1997. Correlation between immunological activity, molar mass, and molecular structure of different (1,3)-β-D-glucans. Carbohydr. Res. 297: 135-143. Eo, S. K., Y. S. Kim, C. K. Lee and S. S. Han. 1999. Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J. Ethnopharmacol. 68: 175-181. Evans, N. A. and P. A. Hoyne. 1982. A fluorochrome from aniline blue: structure, synthesis and fluorescence properties. Aust. J. Chem. 35: 2571-2575. Fang, Q. H. and J. J. Zhong. 2002a. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem. Eng. J. 10: 61-65. Fang, Q. H.and J. J. Zhong. 2002b. Effect of initial pH on production of Ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 37: 769-774. Fang, Q. H., Y. J. Tang and J. J. Zhong. 2002. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem. 37: 1375-1379. Gooday, G.W. 1972. J. Gen. Microbiol., 73, xxi. Matsuzaki, K., Sato, T., Enomoto, K. Yamanoto, I.,Oshima, R., Hatanak, K.I., Uryu, T., Kaku, H., Sone, Y. and Misaki, A. 1986. Synthesis of water-soluble, branched polysaccharides having D-mannopyranose, D-arabinofuranose, or oligo-D-arabinofuranose side-chains and their antitumor activity. Carbohydr. Res., 157: 171-182. Minato, K., Sachiko, K. and Keiichi N. 2004. An exo β-1,3-glucanase synthesized de novo degrades lentinan during storage of Lentinule edodes and diminishes immunomodulating activity of the mushroom. Carbohydr. Polym. 56: 279-286. Miyahara, R., T. Yoshimoto and K. Asawa. 1987. Chemical structure and changes of extracts during growth of Reishi(Ganoderma lucidum). Mokuzai Gakkaishi. 33(5): 416-422. Mizuno, M. 2002. Changes in the amount and physiological activity of an antitumor polysaccharide lentinan in Lentinus edodes (Berk.) during different storage conditions. Sci. Reports of Faculty of Agric. Kobe Univer. 26: 39-42. Okazaki, M., Adachi, Y., Ohno, N. and Yadomae, T. 1995. Structure-activity relationship of (1,3)-β-D-glucans in the induction of cytokine production from macrophages, in vitro. Biol. Pharm. Bull. 18(10): 1320-1327. Park, J. P., S. W. Kim, H. J. Hwang, Y. J. Cho, C. H. Song and J. W. Yun. 2002. edible mushrooms under different media. Lett. Appl. Microbiol. 34:56-61. Peng, Y., L. Zhang, F. Zeng and Y. Xu. 2003. Structure and antitumor activity of extracellular polysaccharides from mycelium. Carbohydr. Polym. 54: 297-303. Shiao, M. S. and L. J. Lin. 1987. Two new triterpenes of the fungus Ganoderma lucidum. J. Nat. Prod. 50: 886-890. Shiao, M. S. 2003. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Shimizu, A., T. Yano, Y. Saito and Y. Inada. 1985. Isolation of an inhibitor of platelet aggregation from a fugus, Ganoderma lucidum. Chem. Pharm. Bull. 33: 3012-3015. Singer R. (1961) Mushroom & Truffles. Leonard Hill. London, New York, 272pp. Sone, Y., R. Okuda, N. Wada, E. Kishida and A. Misaki. 1985. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem. 49: 2641-2653 Tang and Zhong. 2003. Role of oxygen in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enz. Microb. Tech. 32: 478-484. Turner, W. B. 1971. Fungal Metabolites. I.C.I., Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, England. Su, C. H. 1991. Taxonomy and physiologically active compounds of Ganoderma- a review. Bull. Taipei Med. College 20: 1-16. Wagner, R., D. A. Mitchell, G. L. Sassaki, M. A. L. de A. Amazonas and M. Berovic. 2003. Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technol. Biotech. 41(4): 372-382. Wang, S. Y., M. L. Hsu, H. C. Hsu, C. H. Tzeng, S. S. Lee, M. S. Shiao and C. K. Ho. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. 1997. Int. J. Cancer: 70: 699-705. Wang, Y. Y., K. H. Khoo, S. T. Chen, C. C. Lin, C. H. Wong and C. H. Lin. 2002. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorgan. Med. Chem. 10: 1057-1062. Wood, D. A. 1978. Biochemical changes during growth and development of Agaricus bisporus. Mushroom Science X (Part I). Proceedings of the tenth international congress on the science and cultivation of edible fungi, France.: 401-415. Yang, F. C., C. Hsieh and H. M. Chen. 2003. Use of stillage grain from a rice-spirit distillery in the solid state fermentation of Ganoderma lucidum. Proc. Biochem. 39: 21-26. Yang, F. C. and C. B. Liau. 1998a. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged culture. Process Biochem. 33(5): 547-553 Yang, F. C. and C. B. Liau. 1998b. Effect of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures.Bioprocess Eng. 19:233-236 Yang, F. C. and S. Y. Hwang. 1998. Nutritional studies on submerged culture of Ganoderma lucidum. Tunghai J. 39: 1-10. Yoshioka, Y., N. Uehara and H. Saito. 1992. Conformation-dependent change in antitumor activity of linear and branched (1,3)-β-D-glucans on the basis of conformational elucidation by Carbon-13 nuclear magnetic resonance spectroscopy. Chem. Pharm. Bull. 40(5): 1221-1226. Young, S. H. and Jacobs R.R. 1998. Sodium hydroxide-induced conformational change in Schizophyllan detected by the fluorescence dye, aniline blue. Carbohydr. Res. 310(1-2):91-99. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36030 | - |
| dc.description.abstract | 為瞭解靈芝生長過程熱水可溶多醣之產量與所含(1,3)-β-D-葡萄聚醣性質的變化,本論文選用BCRC 36041、BCRC 36123與一商業菌株,觀察菌絲與子實體生長過程中熱水可萃取之多醣含量與其(1,3)-β-D-葡萄聚醣含量比例,並同時分析(1,3)-β-D-葡萄聚醣的分支度與分子量分布。菌絲培養採用液態靜置培養方式,三種菌絲之生長速度有明顯的差異,雖菌絲生長量均隨天數而增長,但以BCRC 36041的生長量最高。實驗結果同時發現,菌絲生長量不與多醣產生量成正比,BCRC 36041的菌絲量為三菌種最高,但多醣產量則以BCRC 36123 最多。此外,各菌種以培養到第22天與第27天得到其最高的多醣與(1,3)-β-D-葡萄聚醣產量。菌絲體液態發酵培養之多醣分子量分布多集中於中分子量及低分子量區分,各菌種的多醣之分子量分布特徵與分支度於培養第12天後即無明顯差異。
熱水可萃取之子實體多醣及(1,3)-β-D-葡萄聚醣含量以第三生長階段(蕈傘分化期) 最高,其多醣分子量分布之高分子量區分之比例高於菌絲體液態培養之多醣,且此區分之(1,3)-β-D-葡萄聚醣在多醣中比例有隨著生長階段而增加的趨勢。故可初步推估第五期雖然可萃出之多醣量較少,但其多醣品質相較於其他生長階段較佳。綜實驗結果顯示,同一菌種之菌絲液態發酵培養多醣與子實體多醣相較,前者之(1,3)-β-D-葡萄聚醣在多醣中比例多集中於高分子量與中分子量區分,且於培養第17天後其多醣特性則十分相近; 而子實體多醣中,高分子量之(1,3)-β-D-葡萄聚醣在多醣中比例則要在老熟期時比例才會顯著增高。 | zh_TW |
| dc.description.abstract | To investigate the characteristics changes of hot water extractable polysaccharides and (1,3)-β-D-glucans from Ganoderma lucidum during growth, strains of BCRC 36041, BCRC 36123 and a commercial one are selected in this study. We evaluated hot water extractable polysaccharides and the ratio of its contents in (1,3)-β-D-glucans, and analyzed the degree of branching and the distribution of molecular weight in (1,3)-β-D-glucans. Mycelium was propagated in static liquid culture, three strains showed significant difference in the growth rate. Although the mycelium bimomass increased with culture days, the production of polysaccharides was not propotional to mycelium biomass. BCRC 36041 grew most mycelium, while BCRC 36123 produced most polysaccharide among three strains. Most polysaccharides and (1,3)-β-D-glucans were obtained in 22 and 27 days of culture. The distribution of molecular weight of polysaccharide from mycelium liquid culture appeared mostly in medium molecular weight and low molecular weight fractions. There was no obvious difference in the distribution of molecular weight and the degree of branching in polysaccharide from three strains after 12 days of culture.
We can get the highest hot water extractable polysaccharides and (1,3)-β-D-glucans from fruiting bodies of the 3rd culture stage (the stage of pileus differentiation), the ratio of high molecular weight fraction is higher than that of polysaccharides cultured from mycelium liquid culture, and the proportion of (1,3)-β-D-glucans in polysaccharides icreased by growth stages. The qualities of polysaccharide were better than that extracted from another growth stage , although the extactable polysaccharides were less in 5th stage. Comparing the polysaccharides extracted from mycelium liquid culture and fruiting bodies, the former showed that the proportion of (1,3)-β-D-glucans in polysaccharides more concentrated in high molecular weight and medium molecular weight fractions. The characteristics of polysaccharides extracted from mycelium liquid culture kept similar after the 17th days of culture, but higher ratio of (1,3)-β-D-glucans in polysaccharides would probality appear in fruiting bodies of more mature stages. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:50:00Z (GMT). No. of bitstreams: 1 ntu-94-R88628109-1.pdf: 2861962 bytes, checksum: 056d2aca552df3fc1b5a5a3ce0b158af (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 總目錄
中文摘要……………………………………………………………… Ⅰ 英文摘要………………………………………………………………Ⅱ 總目錄…………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅷ 圖目錄…………………………………………………………………Ⅸ 壹前、言…………………………………………………………………1 貳、文獻回顧……………………………………………………………2 一、靈芝在中國藥學古籍中之地位……………………………………2 二、靈芝的分類與特徵…………………………………………………2 三、靈芝的活性功效……………………………………………………3 1.抗腫瘤與免疫調節活性………………………………………………4 2.抗病毒…………………………………………………………………5 3.抑制血小板凝集………………………………………………………5 4.抗愛滋…………………………………………………………………6 四、靈芝組成份…………………………………………………………6 (一)化學成分……………………………………………………………6 (二)活性成分……………………………………………………………7 1.多醣……………………………………………………………………7 2.三萜類…………………………………………………………………8 五、子實體栽培條件對其形態或多醣產量之影響……………………9 (一)培養基成分對子實體多醣產量之影響…………………………11 (二)栽培條件對形態之影……………………………………………12 1.栽培溫度……………………………………………………………12 2.栽培光量……………………………………………………………12 3.溼度…………………………………………………………………12 4.空氣組成……………………………………………………………13 5.栽培時期……………………………………………………………13 六、靈芝菌絲體液態發酵培養條件對多醣產量之影響……………13 (一)培養基成份………………………………………………………15 1.碳源…………………………………………………………………16 2.氮源…………………………………………………………………16 3.碳/氮比………………………………………………………………17 (二)外控環境因子……………………………………………………18 1.pH值…………………………………………………………………18 2.接種量………………………………………………………………18 3.溫度…………………………………………………………………19 4.通氣量與通氣速率…………………………………………………20 5.攪拌速率……………………………………………………………20 七、具β-(1,6)葡萄糖基分支之(1,3)-β-D葡萄聚醣分子結構與生理活性之關係……………………………………………………………21 1.骨幹形式……………………………………………………………21 2.分子量………………………………………………………………21 3.分支度………………………………………………………………22 4.構形…………………………………………………………………23 八、利用aniline blue螢光染色法定量(1,3)-β-D-聚葡萄醣……24 叁、實驗材料與方法…………………………………………………27 一、實驗材料…………………………………………………………27 (一)菌種來源及保存…………………………………………………27 1.靈芝菌株……………………………………………………………27 2.菌種保存……………………………………………………………27 (二)菌絲液態發酵培養………………………………………………27 1.菌絲培養……………………………………………………………27 2.菌絲體液態發酵培養培養基………………………………………28 3.培養及取樣…………………………………………………………28 (三)子實體栽培之用…………………………………………………28 1.麥粒製作……………………………………………………………28 2.菌絲培養……………………………………………………………29 3.子實體栽培之太空包組成…………………………………………29 4.培養及取樣…………………………………………………………29 二、靈芝多醣樣品之製備……………………………………………30 (一)靈芝菌絲體靜置培養樣品………………………………………30 (二)太空包栽培子實體………………………………………………30 三、分析方法…………………………………………………………30 (一)液態發酵培養之菌絲乾重及固形物乾重………………………30 (二)子實體之含水率及固形物乾重…………………………………31 (三)子實體之熱水萃取率……………………………………………31 (四)醣類分析…………………………………………………………31 1.總醣量之測定………………………………………………………31 2.多醣量之測定………………………………………………………31 3.(1,3)β-D glucan之定量……………………………………………32 4.分子量分布—膠體過濾層析法……………………………………33 5. (1,3)β-D glucan含量與分支度—酵素–高效陰離子層析法…34 肆、結果與討論………………………………………………………35 一、.培養基對菌絲體液態靜置培養過程多醣生成量與其分子特性變化之影響 (一)培養基對菌株BCRC 36123菌絲生長量之影響…………………35 (二)培養基對菌株BCRC 36123之熱水可萃醣含量變化之影響……36 (三)菌株BCRC 36123於不同培養基之熱水可翠多醣分子量及分支度 變化……………………………………………………………………40 二、不同菌種菌絲體液態靜置培養過程多醣生成量與其分子特性變化 (一)菌絲體液態發酵培養過程菌絲體乾重變化……………………50 (二)菌絲體液態發酵培養過程之熱水可萃總醣變化………………51 (三)菌絲體液態發酵培養過程之熱水可萃多醣變化………………51 (四)菌絲體液態發酵培養過程之熱水可萃(1,3)β-D glucan變化…52 (五)菌絲體液態發酵培養過程之熱水可萃多醣之分子量分布變化………………………………………………………………………55 (六)菌絲體液態發酵培養過程之熱水可萃多醣之分支度變化……63 三、不同菌種子實體培養過程多醣生成量與其分子特性的變化…65 (一)子實體生長與含水率之變化……………………………………65 (二)子實體生長階段之熱水可萃總醣含量變化……………………69 (三)子實體生長階段之熱水可萃多醣含量變化……………………69 (四)子實體生長階段之熱水可萃(1,3)β-D glucan含量變化………70 (五)子實體生長階段之熱水可萃多醣之分子量分布變化…………75 (六)子實體生長階段之熱水可萃多醣之分支度變化………………76 伍、結論………………………………………………………………86 陸、參考文獻…………………………………………………………88 附錄一、靈芝屬菌株液態發酵條件整理……………………………94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多醣 | zh_TW |
| dc.subject | 靈芝 | zh_TW |
| dc.subject | 子實體 | zh_TW |
| dc.subject | 菌絲體液態培養 | zh_TW |
| dc.subject | 生長階段 | zh_TW |
| dc.subject | mycelium liquid culture | en |
| dc.subject | Ganoderma lucidum | en |
| dc.subject | polysaccharide | en |
| dc.subject | different culture stages | en |
| dc.subject | fruiting bodies | en |
| dc.title | 靈芝不同生長階段液態培養菌絲與子實體之水溶性多醣特性 | zh_TW |
| dc.title | The characteristics of water-soluble polysaccharides from different culture stages of mycelium liquid cluture and fruiting bodies of Ganoderma spp. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 呂廷璋(Ting-Jang Lu) | |
| dc.contributor.oralexamcommittee | 張永和(Yung-Ho Chang),王伯徹(Bor-Cheh Wang),張祖亮(Tsu-Liang Chang) | |
| dc.subject.keyword | 靈芝,子實體,菌絲體液態培養,生長階段,多醣, | zh_TW |
| dc.subject.keyword | Ganoderma lucidum,fruiting bodies,mycelium liquid culture,different culture stages,polysaccharide, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
