請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35971完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴朝明 | |
| dc.contributor.author | Pei-Yu Chen | en |
| dc.contributor.author | 陳佩瑜 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:48:57Z | - |
| dc.date.available | 2007-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | 1. 王一雄。1997。土壤環境污染與農藥。國立編譯館主編。P.148。
2. 江淑真。1998。不同施肥管理下水旱田輪作土壤酵素活性之變動。台灣大學農業化學研究所碩士論文。台北市。 3. 林宜貞。2002。台灣代表性土系農田土壤生物性質之研究。台灣大學農業化學研究所碩士論文。台北市。 4. 林依蓉。2001。多氯聯苯厭氧馴養降解菌群微生物多樣性解析。中央大學生命科學研究所碩士論文。桃園縣。 5. 郁文涵。2004。建構土壤多源基因庫與開發新型酵素。台灣大學農業化學研究所碩士論文。台北市。 6. 邱子權。2004。有機氯化烴殺蟲劑厭氧微生物降解作用與其菌群結構之研究。台灣大學農業化學研究所博士論文。台北市。 7. 莊作權、楊明富。1992。水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力之影響。中國農業化學會誌。30:553-568。 8. 郭雅惠。2003。玉米-水稻輪作系統下不同施肥管理對根圈土壤酵素活性之影響。台灣大學農業化學研究所碩士論文。台北市。 9. 張禮愷。1987。土壤酶學。科學出版社。p.100-262。 10. 劉桂龍。1999。不同施肥管理對土壤中與氮、磷循環有關酵素活性之影響。台灣大學農業化學研究所碩士論文。台北市。 11. 劉桂龍和賴朝明。2000。玉米-水稻輪作及不同氮肥施用對土壤酵素活性之影響。中華土壤肥料學會八十九年度會員大會暨土壤特性與更有效的施肥管理研討會摘要集。p. 43-44。中華土壤肥料學會。民國八十九年十二月十五日。台北市。 12. 劉桂龍、賴朝明和謝慧妞。2001。長期玉米與水稻輪作下不同氮肥施用對土壤酵素活性之影響。有機肥料與合理化施肥研討會「土壤永續生產與環境保護」論文集。p. 189-192。中華土壤肥料學會。民國九十年十月二十九至三十日。台中市。 13. 蔡政賢。1999。不同施肥管理對土壤中與碳、硫循環有關酵素活性之影響。台灣大學農業化學研究所碩士論文。台北市。 14. 鄭國隆。2000。土壤酵素活性與土壤生態系之關係。台灣大學農業化學研究所碩士論文。台北市。 15. 賴朝明。1993。不同作物栽培系統對土壤酵素活性的影響。中華生質能源學會會誌。12:89-97。 16. 賴朝明、洪崑煌。1991。台灣主要耕地土壤尿素酶、酸性磷酸酯酶及去氫酶之活性及其與土壤性質的關係。中國農業化學會誌。29:382-395。 17. 賴朝明、郭雅惠和劉桂龍。2002。土壤生態系中根圈酵素活性之研究。農業土壤生態品質及生產力研討會論文集。p. 47-68。國立中興大學土壤環境科學系。民國九十一年九月五日。台中市。 18. Acosta-Martinez, V., and M. A. Tabatabai. 2000. Arylamidase activity of soil. Soil Sci. Soc. Am. J. 64: 215-221. 19. Acosta-Martinez, V., T. M. Zobeck, T. E. Gill and A. C. Kennedy. 2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biol. Fert. Soils. 38:216-227. 20. Albiach, R., R. Canet, F. Pomares, and F.Ingelmo. 2000. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour. Technol. 75: 43–48. 21. Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in stiu detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169. 22. Atlas R.M., A. Horowitz, M. Krichevsky, and A.K. Bej. 1992. Response of microbial populations to environmental disturbance. Microb. Ecol. 22:249–256. 23. Bandick, A. K. and R. P. Dick. 1999. Field management effects on soil enzyme activities. Soil Biol. Biochem. 31:1471-1479. 24. Bej A.K., M. Perlin, and R.M. Atlas. 1992. Effect of introducing genetically engineered microorganisms on soil microbial community diversity. FEMS. Microbiol. Ecol. 86:169–176. 25. Benítez, E., R. Melgar, H. Sainz, M. Gómez and R. Nogales. 2000. Enzyme activities in the rhizosphere of pepper (Capsicum annuum, L.) grown with olive cake mulches. Soil Biol. Biochem. 32:1829-1835. 26. Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphours in soils. Soil Sci. 59:39-45. 27. Bremner, J. M., and D. R. Keeney. 1966. Determination and isotope-ratio analysis of different forms nitrogen in soil: 3. Exchangeable ammonium, nitrate and nitrite by extraction-distillation method. Soil Sci. Soc. Am Proc. 30:577-582. 28. Casida, L. E., Jr. D. A. Klein, and T. Santoro. 1964. Soil dehydrogenases activity. Soil Sci. 98:371-376. 29. Clark, F. E. 1949. Soil microorganisms and plant roots. Adv. Agron. 1:241-288. 30. Crecchio, C., M. Curci, R. Mininni, P. Ricciuti, and P. Ruggiero. 2001. Shortterm effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity. Biol. Fert. Soils. 34: 311–318. 31. Crecchio, C., M. Curci, M.D.R. Pizzigallo, P. Ricciuti, and P. Ruggiero. 2004. Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Biol. Fert. Soils. 36: 1595–1605. 32. Curl, E. A., and B. Truelove. 1986. Introduction. p. 1-8. In D. F. R. Bommer et al. (eds.). The rhizosphere. Springer-Verlog, Berlin, Germany. 33. Di Cello, F., A. Bevivino, L. Chiarini, R. Fani, D. Paffetti, S. Tabacchioni, and C. Dalmastri. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 63:4485-4493. 34. Dick, R. P. 1994. Soil enzyme activities as indicators of soil quality. In Doran, J.W. et al. (eds.) Defining soil quality for a sustainable environment, SSSA Spec Publ 35. Madison. Wisconsin. 35. Dick, R. P., P. E. Rasmussen, and E. A. Kerle. 1988. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fert. Soils. 6:159-164. 36. Dhruva Kumar, J. H. A., G. D. Sharha, and R. R. Mishra. 1992. Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil Biol. Biochem. 24:761-767. 37. Dodor, D. E., and M. A. Tabatabi. 2002. Effect of cropping systems and microbial biomass on arylamidase activity in soil. Biol. Fertil. Soils. 35: 253-261. 38. Dweikat I., S. Mackenzie, M. Levy, and H. Ohm. 1993. Pedigree assessment using RAPD-DGGE in cereal crop species. Theor. Appl. Genet. 85:497–505. 39. Eivazi, F., and M. A. Tabatatai. 1988. Glucosidases and galactosidases in soil. Soil Biol. Biochem. 20:601-606. 40. Engelen B., K. Meinken, F. Wintzingerode, H. Heuer, H.P. Malkomes, and H. Backhaus. 1998. Monitoring impacts of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl. Environ. Microbiol. 64:2814–2821. 41. Eichner C.A., R.W. Erb, K.N. Timmis, and D.I. Wagner. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65:102–109. 42. Ekenler, M., and M. A. Tabatabi. 2002. ß-glucosaminidase activity of soil: effect of cropping systems and its relationship to nitrogen mineralization. Biol. Fertil. Soils. 36: 367-376. 43. Farrell, R. E., V. V. S. R. Gupta, and J. J Germida. 1994. Effects of cultivation on the activity and kinetics of arylsulfatase in Saskatchewan soils. Soil Biol. Biochem. 26:1033-1040. 44. Fox, T. R., and N. B. Comerford. 1992. Rhizosphere phosphatase activity and phosphatase hydrolyzable organic phosphorus in two forested spodosols. Soil Biol. Biochem. 24:579-583. 45. Friedel, J. K., J. C. Munch, and W. R. Fischer. 1996. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation. Soil Biol. Biochem. 28:479-488. 46. García, C., M. T. Hernandez, and F. Costa. 1997. Potential use of dehydrogenase activity as an index of microbial activity in degraded soil. Commun. Soil Sci. Plant Anal. 28:123-134. 47. Gianfreda L. and J. Bollag. 1994. Effect of soils on the behavior of immobilized enzymes. Soil Sci. Soc. Am. J. 58:1672-1681. 48. Gigliotti C., L. Allievi, C. Salardi, F. Ferrari, and A. Farini. 1998. Microbial ecotoxicity and persistence in soil of the herbicide bensulfuron-methyl. J Environ Sci Health, Part B: Pest. Food Contam.Agric. Waste. 33:381–398. 49. Gillies A.C.M., J.P. Cornelius, A.C. Newton, C. Navarro, M. Hernandez, and J. Wilson. 1997. Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L. assessed using RAPDs. Molec. Ecol. 6:1133–1145. 50. Giusquiani, P. L., M. Pagliai, G. Gigliotti, D. Businelli, and A. Benedetti. 1995. Urban waste compost: effects on physical, chemical and biochemical soil properties. J. Environ. Qual. 24:175-182. 51. Griffiths B.S., K. Ritz, N. Ebblewhite, and G. Dobson. 1999. Soil microbial community structure: effects of substrate loading rates. Soil Biol. Biochem. 31:145–153. 52. Guntli, D., M. Heeb, Y. Moënne-Loccoz and G. Défago. 1999. Contribution of calystegine catabolic plasmid to competitive colonization of rhizosphere of calystrgine-producting plants by Sinorhizobium meliloti Rm41. Mol. Ecol. 8:855-863. 53. Hadrys H., M. Balick, and B. Schierwater. 1992. Application of random amplified polymorphic DNA (RAPD) in molecular ecology. Molec. Ecol. 1:55–63. 54. Hiwada, K., C. Yamaguchi, Y. Inaoka, and T. Kokubu. 1980. Isolation and characterization of membrane-bound arylamidases from human placenta and kidney. J. Biochem. 104:155-165. 55. Horwath, W. R., and E. A Paul. 1986. Microbial biomass. p. 753-773. In S. H. Micklson et al. (eds.) Method of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 56. Hǿjberg, O., S. J. Binnerup and J. Sǿrensen. 1996. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere. Soil Biol. Biochem. 28:47-54. 57. Hu, S., A. H. C. Bruggen, R. J. Wakeman, and N.J. Grunwald. 1997. Microbial suppression of in vitro growth of Pythium ultimum and disease incidence in relation to soil C and N availability. Plant Soil. 195:43–52. 58. Jordan, D., R. J. Kremer, L. Stanley, W. A. Bergfield, K. Y. Kim, and V. N. Cacnio. 1995. An evaluation of microbial methods as indicators of soil quality in longterm cropping practices in historical field. Biol. Fert. Soils. 19:297-308. 59. Klose S. and M.A. Tabatabai. 1999. Urease activity of microbial biomass in soil. Soil Biol. Biochem. 31:205-211. 60. Knauff, U., M. Schulz, and H. W. Scherer. 2003. Arylsufatase activity in the rhizosphere and roots of different crop species. Europ. J. Agronomy. 19:215-223. 61. Kuo. S. 1996. Phosphorus. p. 869-919. In D. L. Sparks. (ed.) Methods of soil analysis. Part 3. ASA and SSSA, Madison, WI. 62. Lawrance, R., B.R. Stinner, and G.J. House. 1984. Introduction. p. 3. In Agricultural ecosystems: Unifying concepts. Wiley-interscience. New York, USA. 63. Lee, J.-J., R.-D. Park, Y.-W. Kim, J.-H. Shim, D.-H. Chae, Y.-S. Rim, B.-K. Sohn, T.-H. Kim, and K.-Y. Kim. 2004. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresour. Technol. 93: 21-28. 64. Liang Y., Y. Yang, C. Yang, Q. Shen, J. Zhou, and L. Yang. 2003. Soil enzymatic activity and growth of rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma. 115: 149.160. 65. Manahan, S. E. 2000. Environmental chemistry. 7th ed.CRC press LLC. 66. Marschner, H. 1986. Mineral Nutrition of Higher Plants. p. 674. Academic Press, London. 67. Martens, D. A., J. B. Johanson, and W. T. Jr. Frankenberger. 1992. Production and persistence of soil enzymes with organic residues. Soil Sci. 153:53-61. 68. Marschnera, P., E. Kandelerb, and B. Marschnerc. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35:453-461. 69. Mawdsley, J. L., and R.G. Burns. 1994. Inoculation of plants with a Flavobacterium species results in altered rhizosphere enzyme activities. Soil Biol. Biochem. 26:871-882. 70. Maynard, D. G., Y. P. Kalra, and F. G. Radford. 1987. Extraction and determination of sulfur in organic of forest soil. Soil Sci. Soc. Am. J. 51:801-805. 71. Naseby, D. C., and J. M. Lynch. 1997. Rhizosphere soil enzyme as indicators of perturbations caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biol. Biochem. 29:1353-1362. 72. Naseby, D. C., and J. M. Lynch. 1998. Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol. Ecol. 7:617-625. 73. Nelson, D. W., and L. E., Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 964-1010. In A. L. Page et al. (eds.) Methods of soil analysis. Part 3. ASA and SSSA, Madison, WI. 74. Nicholas D. J. D. 1965. Influence of the rhizosphere on the mineral nutrition of the plant. p. 210-217. In K. F. Baker and Snyder W. C. (eds.) Ecology of soil-borne plant pathogens. Univ Calif Press, Berkeley. 75. NichoIson P.S., and P.R. Hirsch. 1998. The effects of pesticides on the diversity of culturable soil bacteria. J. Appl. Microbiol. 84:551–558. 76. Nolan M.F., M.L.Skontnicki, and A.J. Gibbs. 1996. RAPD variation in populations of Cardamine lilacina (Brassicaceae). Austr. System. Bot. 9:291–299. 77. Nubel U., F. Garcia-Pichel, M. Kuhl, and G. Muyzer. 1996. Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65:422–430. 78. Parham, J. A., and S. P. Deng. 2000. Detection, quantification and characterization of ß-glucosaminidase activity in soil. Soil Biol. Biochem. 32:1183-1190. 79. Paul, L. E. B., and F. Peter. 1999. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl. Environ. Microbiol. 65:1826-1833. 80. Pascual, J. A., C. Garcı´a, and T. Hernandez. 1999. Lasting microbiological and biochemical effects of the addition of municipal solid waste to an arid soil. Biol. Fert. Soils. 30: 1–6. 81. Perucci, P. 1992. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol. Fert. Soils. 14:54-60. 82. Picard, C., F. D. Cello, M. Ventura, R. Fani, and A. Guckert. 2000. Frequuency and biodiversity of 2,1 diacetylphloroglucinol-producting bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66:948-955. 83. Ranjard, L., F. Poly, and S. Nazaret. 2000. Monitoring complex bacterial communities using culture-independent molecular techniques:application to soil environment. Res. Microbiol. 151:167-177. 84. Rich, J. J., R. S. Heichen, P. J. Bottomley, K. Cromack, and D. D. Myrold. 2003. Community composition and functioning of denitrifying bacteria form adjacent meadow and forest soil. Appl. Environ. Microbiol. 69:5974-5982. 85. Rojo, M., S. Carcedo, and M. Mateos. 1990. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol. Biochem. 22:169-174. 86. Schierenbeck K.A., M. Skupski, D. Leiberman, M. Leiberman. 1997. Population structure and genetic diversity in four tropical tree species from Costa Rica. Molec. Ecol. 6:137–144. 87. Schloter, M, M. Lebuhn, T. Heulin and A. Hartmann. 2000. Ecology and evolution of bacterial microdiversity. FEMS. Microbiol. Rev. 24:647-660. 88. Seldin L., A. S. Rosado, D. W. da Cruz, A. Nobrega, J. D. van Elsas, and E. Paiva. 1998. Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different brazilian soil. Appl. Environ. Microbiol. 64:3860-3868. 89. Shen, Q., Y. Wang, W. Chen, and R. Shi. 1997. Changes of soil microbial biomass C and P during wheat growth after application of fertilizers. Pedosphere. 7: 225-230. 90. Skujins, J. J. 1967. Enzyme in soil. p. 371-414. In A. D. McLaren, and G. H. Peterson (eds.) Soil biochem. Vol. 1. Marcel Dekker, New York. 91. Sneath, P.H., and R.R. Sokal. 1973. Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San Francisco. p.573. 92. Soares-Ramos, J. R. L., H. J. O. Ramos, L. M. Cruz, L. S. Chubatsu, F. O. Pedrosa, L. U. Rigo, and E. M. Souza. 2003. Comparative molecular analysis of Herbaspirillum strains by RAPD, RFLP, and 16S rDNA sequencing. Genetics Molec. Biol. 26:537-543. 93. Stevenson F.J. 1994. Humus chemistry; genesis, composition, reactions, 2nd edn. Wiley, New York. 94. Stryer L. 1988. Biochemistry, 3rd en. Freeman, New York. 95. Tabatabai, M. A. 1994. Soil enzyme. p. 775-833. In R. W. Weaver et al. (eds.) Methods of Soil Analysis, part 2. SSSA, Madison, WI. 96. Tabatabai, M. A., and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1:301-307. 97. Tabatabai, M. A., and J. M. Bremner. 1970. Arylsulfatase activity of soil. Soil Sci. Soc. Am. Proc. 34:225-229. 98. Tabatabai, M. A., and J. M. Bremner. 1972. Assay of urease activity in soil. Soil Biol. Biochem. 4:479-487. 99. Vallaeys T., F. Persello-Cartieaux, N. Rouard, C. Lors, G. Laguerre, and G. Soulas 1997. PCR-RFLP analysis of 16S rRNA, tfdA and tfdB genes reveals a diversity of 2,4-D degraders in soil aggregates. FEMS. Microbiol. Ecol. 24:269–278. 100. Vázquez, M. M., S. César, R. Azcón, J. M. Barea. 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15:261-272. 101. Wardle, D. A., and D. Parkinson. 1990. Effects of three herbicides on soil microbial biomass and activity. Plant Soil. 122:21–28. 102. Wick, B., R. F. Khne, K. Vielhauer, and P. L. G. Vlek. 2002. Temporal variability of selected soil microbiological and biochemical indicators under different soil quality conditions in south-westen Nigeria. Biol. Fert. Soils. 35:155-167. 103. Whalen, J. K., and P. R. Warman. 1996. Arylsulfatase activity in soil and soil extracts using natural and artificial substrates. Biol. Fert. Soils. 22:373-378. 104. Woese, C. R. 1987 Bacterial evolution. Microbiol. Rev. 51:221-271. 105. Wu, L., D. K. Thompson, G. Li, R. A. Hurt, J. M. Tiedje, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67:5780-5790. 106. Xia X., J.Bollinger, and A. Ogram. 1995. Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Molec. Ecol. 4:17–28. 107. Yang, Y.-H., J. Yao, S. Hu, and Y. Qi. 2000. Effects of Agricultural Chemicals on DNA Sequence Diversity of Soil Microbial Community: A Study with RAPD Marker. Microbial Ecology. 39: 72-79. 108. Young, C. C., N. B. Bohlool, and D. P. Bartholomew. 1980. Soil microbial populations and enzymes associated with the decomposition of roots of a legume and a grass species in a tropical soil. Soils and Fertilizers in Taiwan. p. 41-80. 109. Zantua, M. I., and J. M. Bremner. 1976. Production and persistence of urease activity in soils. Soil Biol. Biochem. 8:369-374. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35971 | - |
| dc.description.abstract | 本研究選擇台灣農業試驗所之試驗田,探討於玉米-水稻輪作系統下七種不同施肥管理對作物根圈土壤中與C、N、P、S元素循環及微生物活性有關之七種酵素(β-配醣酶、β-胺基葡萄糖苷酶、芳香基醯胺酶、尿素酶、酸性磷酸酯酶、芳香基硫酸酯酶及去氫酶)活性以及細菌族群結構之影響。試驗田之玉米-水稻輪作始自1995年8月,其試驗設計採逢機完全區集(RCBD)設計,而七種施肥管理如下:對照組、化肥-N、堆肥、堆肥+1/3N、堆肥+2/3N、綠肥+1/3N、泥炭+1/3N,各處理四重覆。
研究結果顯示:玉米水稻輪作系統下,施用「堆肥」、「堆肥+1/3N」或「堆肥+2/3N」之施肥管理於玉米及水稻生長期間均顯著促進本研究之七種根圈土壤酵素活性(P<0.05),前述玉米及水稻堆肥用量分別為5.17及4.43 t ha-1,化肥N用量分別為140及120 kg ha-1。在玉米生長期中,根圈土壤尿素酶、酸性磷酸酯酶及去氫酶之活性於膝高期較高,根圈土壤芳香基硫酸酯酶之活性於雄穗抽出期較高,而根圈土壤β-配醣酶、芳香基醯胺酶及β-胺基葡萄糖苷酶之活性於收穫期較高;在水稻生長期中,根圈土壤尿素酶、芳香基醯胺酶及β-胺基葡萄糖苷酶之活性於抽穗期較高,根圈土壤β-配醣酶於最大分蘗盛期有顯著較高之活性,根圈土壤芳香基硫酸酯酶及去氫酶之活性於收穫期較高,而根圈土壤酸性磷酸酯酶之活性則無一定之趨勢。相關分析結果顯示:七種根圈土壤酵素活性與玉米田土壤之有機質、銨態氮、硝酸態氮、無機態碳、有效性磷、水溶性磷以及微生物生質碳含量呈顯著相關(P<0.05),而與水稻田土壤之有機質、銨態氮、硝酸態氮、無機態碳、有效性磷、水溶性磷、硫酸鹽、微生物生質碳及氮含量呈顯著相關(P<0.05)。以逢機擴增多型性DNA(Random amplified polymorphic DNA,RAPD)測定細菌族群結構所得到之結果顯示:施用「堆肥+2/3N」施肥管理之細菌族群結構和其他六種施肥管理之細菌族群結構有顯著差異(相似度為0﹪),而其他六種施肥管理間之細菌族群結構則無顯著差異(相似度為67-100﹪),亦即施用「堆肥+2/3N」施肥管理顯著影響根圈土壤之細菌族群結構。 | zh_TW |
| dc.description.abstract | The objectives of this study were to examine the effects of fertilization management on the rhizosphere soil enzyme activities(b-glucosidase, b-glucosaminidase, arylamidase, urease, acid phosphatase, arylsulfatase and dehydrogenase related to C, N, P, and S cycles)and bacterial community structure under a maize-rice crop rotation system in an experimental field in Taiwan Agricultural Research Institute. The maize-rice rotational cropping system was initiated in the experimental field since August 1995. The experimental design was a randomized complete block design with four replications and seven fertilization managements, including:Check, Chemical N, Hog manure compost, Compost + Chemical 1/3N, Compost + Chemical 2/3N, Green manure + Chemical 1/3N, and Peat + Chemical 1/3N.
The results showed that Hog manure compost, Compost + Chemical 1/3N, and Compost + Chemical 2/3N managements significantly increased the activities of rhizosphere soil enzymes in this study(P<0.05). Among the maize crop growing stages, the activities of urease, acid phosphatase, and dehydrogenase in rhizosphere soils were highest in the knee-high stage, that of arylsulfatase was highest in the tasseling stage, and those of b-glucosidase, b-glucosaminidase, and arylamidase in were highest in the harvesting stage; among the rice crop growing stages, the activities of urease, b-glucosaminidase, and arylamidase in rhizosphere soils were highest in the active tasseling stage, that of b-glucosidase was highest in the heading stage, and those of arylsulfatase and dehydrogenase in rhizosphere soils were highest in the harvesting stage. In general, those seven rhizosphere soil enzyme activities significantly correlated with organic matter, ammonium-nitrogen, nitrate-nitrogen, inorganic nitrogen, available phosphate, water soluble- phosphate, and microbial biomass carbon content in maize field(P<0.05), and significantly correlated with organic matter, ammonium nitrogen, nitrate nitrogen, inorganic nitrogen, available phosphate, water soluble phosphate, sulfate and microbial biomass carbon and nitrogen content in rice field(P<0.05). The results of random amplified polymorphic DNA(RAPD)analysis showed that the structure of rhizosphere soil bacterial community on Compost + Chemical 2/3N management was significantly different from the other six managements(0 ﹪similarity), and there was no significant difference among those of six managements(67-100 ﹪similarity). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:48:57Z (GMT). No. of bitstreams: 1 ntu-94-R92623004-1.pdf: 979540 bytes, checksum: f5eee9dedcce1a0e6c144e9c6c63f23e (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要------------------------------------------------- I
Abstract--------------------------------------------- II 目錄----------------------------------------------- IV 表目錄---------------------------------------------- VI 圖目錄------------------------------------------------ VII 附錄目錄------------------------------------------ VIII 前言----------------------------------------------------- 1 前人研究------------------------------------------ 3 一、根圈土壤酵素----------------------------------------- 3 二、七種與土壤C、N、P、S元素循環有關之酵素--------- 4 三、土壤微生物族群結構--------------------------- 5 材料與方法---------------------------------------- 8 一、實驗架構--------------------------------------- 8 二、試驗設計-------------------------------- 9 三、根圈土壤樣品採集------------------------- 10 四、根圈土壤酵素活性測定法----------------------------- 10 五、土壤化學及生物性質測定法------------------------ 12 六、根圈土壤微生物DNA萃取-------------------------- 14 七、聚合酶鏈鎖反應------------------------------ 15 八、逢機擴增多型性DNA----------------------------------- 15 九、統計分析方法--------------------------------- 16 結果與討論-------------------------------------------------------------------------------------- 17 一、玉米-水稻輪作系統下施肥管理對根圈土壤酵素活性之影響- 17 (一)對根圈土壤β-配醣酶活性之影響------------------- 17 (二)對根圈土壤β-胺基葡萄糖苷酶活性之影響---------- 19 (三)對根圈土壤芳香基醯胺酶活性之影響---------------- 21 (四)對根圈土壤尿素酶活性之影響-------------- 23 (五)對根圈土壤酸性磷酸酯酶活性之影響----------------- 25 (六)對根圈土壤芳香基硫酸酯酶活性之影響-------- 27 -(七)對根圈土壤去氫酶活性之影響----------------- 29 二、玉米-水稻輪作系統下根圈土壤酵素活性與土壤化學及生物性質之關係 32 (一)玉米水稻輪作系統下施肥管理對土壤化學及生物性質之影響 32 (二)玉米生長期根圈土壤酵素活性與土壤化學及生物性質之關係 35 (三)水稻生長期根圈土壤酵素活性與土壤化學及生物性質之關係 36 三、玉米-水稻輪作系統下施肥管理對水稻根圈土壤細菌族群結構之影響 41 (一)根圈土壤微生物DNA萃取----------------------------- 41 (二)聚合酶鏈鎖反應-------------------------------- 43 (三)逢機擴增多型性DNA-------------------------------- 43 (四)施肥管理對水稻根圈土壤細菌族群結構之影響---- 46 結論------------------------------------------- 48 參考文獻----------------------------------------------- 49 附錄--------------------------------------------- 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 土壤酵素 | zh_TW |
| dc.subject | 根圈 | zh_TW |
| dc.subject | 玉米 | zh_TW |
| dc.subject | 施肥管理 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 輪作 | zh_TW |
| dc.subject | 細菌族群結構 | zh_TW |
| dc.subject | fertilization management | en |
| dc.subject | soil enzyme | en |
| dc.subject | rhizosphere | en |
| dc.subject | maize | en |
| dc.subject | rice | en |
| dc.subject | crop rotation | en |
| dc.subject | bacterial community structure | en |
| dc.title | 玉米-水稻輪作系統下施肥管理對根圈土壤酵素活性及細菌族群結構之影響 | zh_TW |
| dc.title | Effects of Fertilization Management on Rhizosphere Soil Enzyme Activities and Bacterial Community Structure under a Maize-Rice Crop Rotation System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊秋忠,譚鎮中,李佳音,陳建德 | |
| dc.subject.keyword | 玉米,水稻,輪作,施肥管理,根圈,土壤酵素,細菌族群結構, | zh_TW |
| dc.subject.keyword | maize,rice,crop rotation,fertilization management,rhizosphere,soil enzyme,bacterial community structure, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 956.58 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
