請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35937完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Ya-Wen Kuo | en |
| dc.contributor.author | 郭雅雯 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:48:28Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | 1. Beutler WJ, Fredrickson BE, Murtland A, et al. The natural history of spondylolysis and spondylolisthesis: 45-year follow-up evaluation. Spine 2003;28:1027-35; discussion 35.
2. Bono CM. Low-back pain in athletes. J Bone Joint Surg Am 2004;86-A:382-96. 3. Cagli S, Crawford NR, Sonntag VK, et al. Biomechanics of grade I degenerative lumbar spondylolisthesis. Part 2: treatment with threaded interbody cages/dowels and pedicle screws. J Neurosurg 2001;94:51-60. 4. Chosa E, Totoribe K, Tajima N. A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. J Orthop Res 2004;22:158-63. 5. Cripton PA, Dumas GA, Nolte LP. A minimally disruptive technique for measuring intervertebral disc pressure in vitro: application to the cervical spine. J Biomech 2001;34:545-9. 6. Cripton PA, Jain GM, Wittenberg RH, et al. Load-sharing characteristics of stabilized lumbar spine segments. Spine 2000;25:170-9. 7. Cyron BM, Hutton WC. The fatigue strength of the lumbar neural arch in spondylolysis. J Bone Joint Surg Br 1978;60-B:234-8. 8. Cyron BM, Hutton WC. Variations in the amount and distribution of cortical bone across the partes interarticulares of L5. A predisposing factor in spondylolysis? Spine 1979;4:163-7. 9. Cyron BM, Hutton WC, Stott JR. Spondylolysis: the shearing stiffness of the lumbar intervertebral joint. Acta Orthop Belg 1979;45:459-69. 10. Cyron BM, Hutton WC, Troup JD. Spondylolytic fractures. J Bone Joint Surg Br 1976;58-B:462-6. 11. Elliott BC. Back injuries and the fast bowler in cricket. J Sports Sci 2000;18:983-91. 12. Floman Y. Progression of lumbosacral isthmic spondylolisthesis in adults. Spine 2000;25:342-7. 13. Fredrickson BE, Baker D, McHolick WJ, et al. The natural history of spondylolysis and spondylolisthesis. J Bone Joint Surg Am 1984;66:699-707. 14. Frei H, Oxland TR, Nolte LP. Thoracolumbar spine mechanics contrasted under compression and shear loading. J Orthop Res 2002;20:1333-8. 15. Green TP, Allvey JC, Adams MA. Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine 1994;19:2683-91. 16. Hutton WC, Cyron BM. Spondyloysis. The role of the posterior elements in resisting the intervertebral compressive force. Acta Orthop Scand 1978;49:604-9. 17. Ianuzzi A, Little JS, Chiu JB, et al. Human lumbar facet joint capsule strains: I. During physiological motions. Spine J 2004;4:141-52. 18. Inoue H, Ohmori K, Miyasaka K. Radiographic classification of L5 isthmic spondylolisthesis as adolescent or adult vertebral slip. Spine 2002;27:831-8. 19. Kahle W. Locomotor System. 4 ed. New York: George Thieme Verlag Stuttgart, 1992. 20. Konz RJ, Goel VK, Grobler LJ, et al. The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. Spine 2001;26:E38-49. 21. Lee RY, Evans JH. The role of spinal tissues in resisting posteroanterior forces applied to the lumbar spine. J Manipulative Physiol Ther 2000;23:551-6. 22. Lonstein JE. Spondylolisthesis in children. Cause, natural history, and management. Spine 1999;24:2640-8. 23. Lundin O, Ekstrom L, Hellstrom M, et al. Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 2000;9:466-71. 24. Lundin O, Ekstrom L, Hellstrom M, et al. Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 1998;23:2574-9. 25. Maurer SG, Wright KE, Bendo JA. Iatrogenic spondylolysis leading to contralateral pedicular stress fracture and unstable spondylolisthesis: a case report. Spine 2000;25:895-8. 26. McGregor AH, Cattermole HR, Hughes SP. Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion? Spine 2001;26:282-6. 27. McLain RF, Yerby SA, Moseley TA. Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine 2002;27:E200-6. 28. McTimoney CA, Micheli LJ. Current evaluation and management of spondylolysis and spondylolisthesis. Curr Sports Med Rep 2003;2:41-6. 29. Mihara H, Onari K, Cheng BC, et al. The biomechanical effects of spondylolysis and its treatment. Spine 2003;28:235-8. 30. Moon MS. 'The pathomechanism of isthmic lumbar spondylolisthesis: a biomechanical study in immature calf spines'. Spine 1999;24:731-2. 31. Natarajan RN, Garretson RB, 3rd, Biyani A, et al. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study. Spine 2003;28:1103-12. 32. Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System. 3 ed. Baltimore: Lippincott Williams & Wilkins, 2001. 33. Reitman CA, Esses SI. Direct repair of spondylolytic defects in young competitive athletes. Spine J 2002;2:142-4. 34. Reitman CA, Gertzbein SD, Francis WR, Jr. Lumbar isthmic defects in teenagers resulting from stress fractures. Spine J 2002;2:303-6. 35. Sairyo K, Goel VK, Grobler LJ, et al. The pathomechanism of isthmic lumbar spondylolisthesis. A biomechanical study in immature calf spines. Spine 1998;23:1442-6. 36. Sairyo K, Katoh S, Ikata T, et al. Development of spondylolytic olisthesis in adolescents. Spine J 2001;1:171-5. 37. Sakamaki T, Katoh S, Sairyo K. Normal and spondylolytic pediatric spine movements with reference to instantaneous axis of rotation. Spine 2002;27:141-5. 38. Soler T, Calderon C. The prevalence of spondylolysis in the Spanish elite athlete. Am J Sports Med 2000;28:57-62. 39. Standaert CJ, Herring SA. Spondylolysis: a critical review. Br J Sports Med 2000;34:415-22. 40. Weiner BK, Walker M, Wiley W, et al. The lateral buttress: an anatomic feature of the lumbar pars interarticularis. Spine 2002;27:E385-7. 41. Yingling VR, Callaghan JP, McGill SM. Dynamic loading affects the mechanical properties and failure site of porcine spines. Clin Biomech (Bristol, Avon) 1997;12:301-5. 42. 金永欽. 脊椎受軸向矢狀面偏心載荷時之椎骨應變與運動元全局力學反應. 醫學工程學所. 台北: 台灣大學, 2004:7-11. 43. 賴政全. 連續載荷下脊椎運動和衝擊載荷下小面關節之力學分析. 醫學工程學所. 台南市: 國立成功大學, 2004:54-59. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35937 | - |
| dc.description.abstract | 目的:探討脊椎運動元接受大小相同的彎曲力矩時,受力姿勢對關節間部的影響,並推測造成椎弓解離的危險因子。
背景簡介:椎弓解離是一種好發於年輕運動員以及青少年脊椎的壓迫性骨折,病灶位於在同節椎骨的上、下小面關節之間,又稱為關節間部,以L5的發生機率最高。目前,對於形成椎弓解離的生物力學機制尚未明朗,但推測反覆式後仰、扭轉,以及前後向剪力會帶給關節間部極大的壓力,是造成此病的主要機械因子,然而支持此看法的力學證據仍十分缺乏,相關的力學研究並不多。 方法:從八個月大的幼豬頸椎,截取C3-C5, C6-T1等兩段雙脊椎運動單元為試樣,分別對每副試樣施加1.2J的前屈、後仰、側彎(左、右)、前屈合併側彎(左、右),以及後仰合併側彎(左、右)等六種彎曲力矩。利用黏貼在中間椎骨左、右關節間部的單軸應變規,量測關節間部的應變量。將實驗數據以變異數分析(ANOVA)檢驗對關節間部影響最大的受力姿勢,歸納可能造成椎弓解離的危險因子。 結果:關節間部的應變量以後仰合併側彎時最高,其次為側彎、後仰、前屈、前屈合併側彎,以及正中姿勢。前三者之中的任何一個姿勢對關節間部造成的應變量,皆明顯大於後三者中的任一種。就異側關節間部而言,仍以後仰合併側彎時最大。當試樣側彎以及後仰合併側彎時,同側關節部的應變量與異側關節間部的差距,具有顯著意義。 結論:容易形成椎弓解離的受力姿勢有後仰、側彎以及後仰合併側彎。後仰合併側彎與側彎是之前較少被提出來探討的受力姿勢,當脊椎處於這兩種姿勢時,同側關節間部的應變量明顯大於異側,證明了這兩種姿勢是預防椎弓解離或阻止脊椎進一步滑脫時,需要列入參考的因素。在本實驗中,前屈、前屈合併側彎對脊椎關節間部造成的應變量不大,與文獻所述有所出入,需要再作進一步的探討。 | zh_TW |
| dc.description.abstract | Objectives:The purpose of the present study was to evaluate the effects of postures on the pars interarticularis when the specimens were applied with constant bending moment. The evaluation will be helpful in estimating the risk factors of spondylolysis.
Summery of Background Data: Spondylolysis is defined as the stress fracture occurred on the pars interarticularis, commonly on L5. The exclusive prevalence is seen in adolescence and young athletes. It is mostly believed that the cyclic extension, rotation and unbalanced shear force are the main mechanical factors leading to the disease. However, the related biomechanical studies and supportive evidence are still sparse. Methods:Two motion segments (C3-C5, C6-T1) were dissected from the porcine cervical spines. Each specimen was loaded with bending moment of 1.2J under the postures of flexion, extension, neutral position, left /right lateral bending, and extension/ flexion combined with left/ right lateral bending, respectively. The strain gages attached to the bilateral pars interarticularis of middle vertebrae were used to measure the strain response in situ. ANOVA was used to exam the significantly effective postures and estimate the risk factors of spondylolysis. Results:The interarticular strain was greatest when specimens were under extension combined with lateral bending, followed by lateral bending, extension, flexion combined with lateral bending, flexion, and neutral position. Any one of the former three postures led to much greater interarticular strain than any one of the latter three postures. As for contralateral side, the greatest strain occurred when the specimens were under extension combined with lateral bending. The difference of ipsilateral and contralateral interarticular strain was significant when the specimens were under lateral bending and extension combined with lateral bending. Conclusion:Extension, lateral bending and extension combined with lateral bending appear to endanger the pars interarticularis. The latter two postures are less highlighted before; however, the present study proves they should be taken into considerations when it comes to the prevention and treatment of the spondylolysis. However, the present study is not sufficient enough to portrait the role of flexion and flexion combined with lateral bending in the etiology of the spondylolysis, so the further researches are necessary in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:48:28Z (GMT). No. of bitstreams: 1 ntu-94-R92548011-1.pdf: 694740 bytes, checksum: ba4ba97be226bfbf6334cad3e65fa446 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目 錄
圖 次 5 表 次 6 第一章 文獻回顧 7 1.1脊椎滑脫的簡介 7 1.2椎弓解離之簡介 8 1.3 生物力學研究 14 第二章 材料與方法 17 2 .1 試樣準備 17 2.2 負載型式 18 2.3 微應變量測系統 19 2.4 統計分析 19 第三章 實驗結果 20 3 .1 試樣的受力狀態 20 3.2 關節間部對衝擊力的動態反應 22 3.3 試樣的差異性分析 25 3.4 受力姿勢對關節間部的影響 26 第四章 討論 29 4 -1 概要 29 4.2 試樣的受力情形 30 4.3 脊椎受力姿勢對同側關節間部的影響 31 4.4 脊椎受力姿勢對「異側關節間部」的影響 33 4.5 本實驗的限制 34 第五章 結論 37 參考文獻 38 | |
| dc.language.iso | zh-TW | |
| dc.subject | 應變 | zh_TW |
| dc.subject | 椎弓解離 | zh_TW |
| dc.subject | spondylolysis | en |
| dc.subject | interarticular strain | en |
| dc.title | 椎骨關節間部應變量測:椎弓解離危險因子之探討 | zh_TW |
| dc.title | The Measurement of Interarticular Strain--Estimation of Risk Factors of Spondylolysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊世偉(Sai-Wei Yang),趙振綱(Chen-Kang Chao),陳文哲(Wen-Che Chen) | |
| dc.subject.keyword | 應變,椎弓解離, | zh_TW |
| dc.subject.keyword | interarticular strain,spondylolysis, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 678.46 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
