Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35936
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor靳宗洛
dc.contributor.authorJia-Wen Youen
dc.contributor.author游佳雯zh_TW
dc.date.accessioned2021-06-13T07:48:27Z-
dc.date.available2008-07-27
dc.date.copyright2005-07-27
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citationAbe, M., Katsumata, H., Komeda, Y., and Takahashi, T. (2003). Regulation
of shoot epidermal cell differentiation by a pair of homeodomain proteins
in Arabidopsis. Development 130, 635-643.
Altmann, T. (1998). Recent advances in brassinosteroid molecular genetics:
Curr. Opin. Plant Biol. 1, 378–383.
Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355.
Autran, D., Jonak, C., Belcram, K., Beemster, G.T., Kronenberger, J.,
Grandjean, O., Inze, D., and Traas, J. (2002). Cell numbers and leaf
development in Arabidopsis: a functional analysis of the
STRUWWELPETER gene. EMBO J. 21, 6036-49.
Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M.M.,
Ruberti, I., and Morelli, G. (2001). The Arabidopsis ATHB-8 HD-ZIP
protein acts as a differentiation-promoting transcription factor of the
vascular meristems. Plant Physiol. 126, 643–655.
Bartel, D.P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and
function. Cell 116, 281-297.
Barton, M.K., and Poethig, R.S. (1993). Formation of the shoot apical
meristem in Arabidopsis thaliana: An analysis of development in the wild
type and in the shoot meristemless mutant. Development 119, 823-831.
Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., and
Dean, C.. (2004). Vernalization requires epigenetic silencing of FLC by
histone methylation. Nature 427, 164–167.
Baum, S.F., and Bowman, J.L. (2003). Radial patterning of Arabidopsis
shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774.
Blázquez, M.A., Soowal, L.N., Lee, I., and Weigel, D. (1997). LEAFY
expression and flower initiation in Arabidopsis. Development 124,
3835–3844.
Blázquez, M., Koornneef, M., and Putterill, J. (2001). Flowering on time:
genes that regulate the floral transition. Workshop on the molecular basis
of flowering time control. EMBO Rep. 2, 1078–1082.
Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A.,
and Martienssen, R.A. (2000). Asymmetric leaves1 mediates leaf
patterning and stem cell function in Arabidopsis. Nature 408, 967-971.
Byrne. M.E., Simorowski, J., and Martienssen, R.A. (2002). ASYMMETRIC
LEAVES1 reveals knox gene redundancy in Arabidopsis. Developmen
129, 1957-65.
Chien, J. C., and SUSSEX, I. M. (1996). Differential regulation of trichome
formation on the abaxial and adaxial leaf surfaces by gibberellins and
photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol.
111,1321-1328.
Clark, S.E., Runnung, M.P., and Meyerowitz, E.M. (1993). CLAVATA1, a
regulator of meristem and flower development in Arabidopsis.
Development 119, 397-418.
Clark, S.E., Runnung, M.P., and Meyerowitz, E.M. (1995). CLAVATA3 is a
specific regulator of shoot and floral meristem development affecting the
same process as CLAVATA1. Development 121, 2057-2067.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J.
16, 735-43.
Denli, A.M., and Hannon, G.J. (2003). RNAi: an ever-growing puzzle. Trends
Biochem. Sci. 28, 196 201.
Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A.,
Baum, S.F., and Bowman, J.L. (2003). Radial patterning of Arabidopsis
shoots by class III HD-ZIP and KANADI genes. Curr Biol. 13, 1768-1774.
Eshed, Y., Baum, S.F., Perea, J.V., and Bowman, J.L. (2001).
Establishmentof polarity in lateral organs of plants. Curr. Biol. 11,
1251-1260.
Eshed, Y., Izhaki, A., Baum, S.F., Floyd, S.K., and Bowman, J.L. (2004).
Asymmetric leaf development and blade expansion in Arabidopsis are
mediated by KANADI and YABBY activities. Development 131, 2997
3006.
FIetcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M.
(1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot
meristems. Science 283, 1911-1914.
Folkers, U., Kirik, V., Schobinger, U., Falk, S., Krishnakumar, S., Pollock,
M.A., Oppenheimer, D.G., Day, I., Reddy, A.S., and Jürgens ,G. (2002).
The cell morphogenesis gene ANGUSTIFOLIA encodes a
CtBP/BARS-like protein and is involved in the control of the microtubule
cytoskeleton. EMBO J. 21, 1280-1288.
Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The
VERNALIZATION 2 gene mediates the epigenetic regulation of
vernalization in Arabidopsis. Cell 107, 525-535.
Gocal, G.F.W., King, R.W., Blundell, C.A., Schwartz, O.M., Andersen, C.H.,
and Weigel, D. (2001). Evolution of floral meristem identity genes.
Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of
Arabidopsis. Plant Physiol. 125, 1788–1801.
Grandjean, O., Inzé, D., and Traas, J. (2002). Cell numbers and leaf
development in Arabidopsis: a functional analysis of the
STRUWWELPETER gene. EMBO J. 21, 6036-6049.
Gaudin, V., Libault, M., Pouteau, S., Juul, T., Zhao, G., Lefebvre, D., and
Grandjean, O. (2001). Mutations in LIKE HETEROCHROMATIN
PROTEIN 1 affect flowering time and plant architecture in Arabidopsis.
Development 128, 4847–4858.
Hay, A., Kaur, H., Phillips, A., Hedden, P., Hake, S., and Tsiantis, M. (2002).
The gibberellin pathway mediates KNOTTED1-type homeobox function in
plants with different body plans. Current Biology 12, 1557–1565.
Laufs, P., Grandjean, O., Jonak, C., Kiêu, K., and Traas, J. (1998). Cellular
parameters of the shoot apical meristem in Arabidopsis. The Plant Cell 10,
1375-1389.
Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B., and Zhu, J.K.
(2001). The Arabidopsis HOS1 gene negatively regulates cold signal
transduction and encodes a RING finger protein that displays
cold-regulated nucleo—cytoplasmic partitioning. Genes Dev. 15, 912-924.
Lee, I., Aukerman, M.J., Gore, S.L., Lohman K.N., and Michaels, S.D.
(1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of
flowering time in Arabidopsis. Plant Cell 6, 75 83.
Lin, W., Shuai, B., and Springer, P.S. (2003). The Arabidopsis LATERAL
ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions
in the repression of KNOX gene expression and in adaxial-abaxial
patterning. Plant Cell 15, 2241–2252.
Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of
the KNOTTED class of homeodomain proteins encoded by the STM gene
of Arabidopsis. Nature 379, 66-69.
Kerstetter, R.A., Bollman, K., Taylor, R.A., Bomblies, K., and Poethig, R.S.
(2001). KANADI regulates organ polarity in Arabidopsis. Nature 411,
706-709.
Kidner, C.A., and Martienssen, R.A. (2004). Spatially restricted miRNA
directs leaf polarity through ARGONAUTE1. Nature 428, 81-84.
Kim, G.T., Tsukaya, H., Saito, Y., and Uchimiya, H. (1999). Changes in the
shapes of leaves and flowers upon overexpression of cytochrome P450 in
Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 9433-9437.
Kim, G.T., Shoda, K., Tsuge, T., Cho, K.H., Uchimiya, H., Yokoyama, R.,
Nishitani, K., and Tsukaya, H. (2002). The ANGUSTIFOLIA gene of
Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the
arrangement of cortical microtubules in leaf cells and expression of a gene
involved in cell-wall formation. EMBO J. 21, 1267-1279.
Koornneef, M., Hanhart, C.J., and van der Veen J.H. (1991). A genetic and
physiological analysis of late flowering mutants in Arabidopsis thaliana.
Mol. Gen. Genet. 229, 57-66
Koornneef, M., H. Blankestijn-de Vries, Hanhart, C., Soppe, W., and
Peeters, T. (1994). The phenotype of some late-flowering mutants is
enhanced by a locus on chromosome 5 that is not effective in the
Landsberg erecta wild-type. Plant J. 6, 911-919.
Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M., and Soppe, W. (1998).
Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol.
49, 345–370
Kotake, T., Takada, S., Nakahigashi, K., Ohto, M., and Goto, K. (2003).
Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin
protein 1 homolog and represses both FLOWERING LOCUS T to regulate
flowering time and several floral homeotic genes. Plant Cell Physiol. 44,
555–564
Kumaran, M.K., Bowman, J.L., and Sundaresan, V. (2002). YABBY polarity
genes mediate the repression of KNOX homeobox genes in Arabidopsis.
Plant Cell 14, 2761–2770.
Kusaba, S., Fukumoto, M., Honda, C., Yamaguchi, I., Sakamoto, T., and
Kano-Murakami, Y. (1998). Decreased GA1 content caused by the
overexpression of OSH1 is accompanied by suppression of GA
20-oxidase gene expression. Plant Physiol. 117, 1179-84.
Kusaba, S., Kano-Murakami, Y., Matsuoka, M., Tamaoki, M., Sakamoto, T.,
Kerstetter, R.A., Bollman, K., Taylor, A., Bomblies, K., and Poethig, S.
(2001). KANADI regulates organ polarity in Arabidopsis. Nature 411,
706-709.
Kuwabara, A., H. Tsukaya., and T. Nagaya. (2001). Identification of factors
that cause heterophylly in Ludwigia arcuata Walt. (Onagraceae). Plant
Biology 3, 98-105.
Kuwabara, A., Ikegami, K., Koshiba, T., and Nagata, T. (2003). Effects of
ethylene and abscisic acid upon heterophylly in Ludwigia arcuata
(Onagraceae). Planta 217, 880-887.
Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T.
(1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis
shoot meristem. Cell. 6, 805-815.
McConnell, J.R., and Barton, M.K. (1998). Leaf polarity and meristem
formation in Arabidopsis. Development 125, 2935-2942.
McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton,
M.K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial
patterning in shoots. Nature 411, 709-713.
Michaels, S.D., and Amasino, R.M. (2001). Loss of FLOWERING LOCUS C
activity eliminates the late-flowering phenotype of FRIGIDA and
autonomous pathway mutations but not responsiveness to vernalization.
Plant Cell 13, 935-941.
Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y.C., Dolan, S., and Lin, C.
(2003). Regulation of photoperiodic flowering by Arabidopsis
photoreceptors. Proc. Natl. Acad. Sci. USA 100, 2140-2145.
Mouradov, A., Cremer, F., and Coupland, G. (2002). Control of flowering time:
interacting pathways as a basis for diversity. Plant Cell 14, S111-130.
Nath, U., Crawford, B.C., Carpenter, R., and Coen, E. (2003). Genetic
control of surface curvature. Science 299, 1404-1407.
Noh, Y.S., Amasino, R.M. (2003). PIE1, an ISWI family gene, is required for
FLC activation and floral repression in Arabidopsis. Plant Cell. 15,
1671-82.
Ohashi-Ito, K., and Fukuda, H. (2003). HD-zip III homeobox genes that
include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are
involved in procambium and xylem cell differentiation. Plant Cell Physiol.
44, 1350-1358.
Olszewski, N, Sun, T.P., and Gubler, F. (2002). Gibberellin signaling:
biosynthesis, catabolism, and response pathways. Plant Cell 14, S61-80.
Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington,
J.C., and Weigel, D. (2003). Control of leaf morphogenesis by
microRNAs. Nature 425, 257–263.
Paula Suárez-López, Wheatley, K., Robson, F., Onouchi, H., Valverde, F.
and Coupland, G. (2001) CONSTANS mediates between the circadian
clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120.
Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The
CONSTANS gene of Arabidopsis promotes flowering and encodes a
protein showing similarities to zinc finger transcription factors. Cell 80,
847-857
Sakamoto,T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S., and Matsuoka,
M. (2001). KNOX homeodomain protein directly suppresses the
expression of a gibberellin biosynthetic gene in the tobacco shoot apical
meristem. Genes Dev. 15, 581-590.
Sawa, S., Watanabe, K., Goto, K., Liu, Y.G., Shibata, D., Kanaya, E., Morita,
E.H., and Okada, K. (1999). FILAMENTOUS FLOWER, a meristem and
organ identity gene of Arabidopsis, encodes a protein with a zinc finger
and HMG-related domains. Genes Dev. 13, 1079-1088.
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jurgens, G., and Laux,
T. (2000). The stem cell population of Arabidopsis shoot meristems is
maintained by a regulatory loop between the CLAVATA and WUSCHEL
genes. Cell 100, 635-644.
Sculthorpe, C.D. (1967) The Biology of Aquatic Vascular Plants. Arnold,
London
Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis,
E.S. (2000). The molecular basis of vernalization: the central role of
FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. USA 97,
3753–3758.
Sheldon, C.C., Conn, A.B., Dennis, E.S., and Peacock, W.J. (2002).
Different regulatory regions are required for the vernalization-induced
repression of FLOWERING LOCUS C and for the epigenetic maintenance
of repression. Plant Cell 14, 2527–2537.
Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N., and
Bowman, J.L. (1999). Members of the YABBY gene family specify
abaxial cell fate in Arabidopsis. Development 126, 4117-4128.
Simpson, G.G., Gendall, A.R., and Dean, C. (1999). When to switch to
flowering. Annu. Rev. Cell Dev. Biol. 15, 519–550.
Sung, S., and Amasino, R.M. (2004). Vernalization in Arabidopsis thaliana is
mediated by the PHD finger protein VIN3. Nature 427, 159–164.
Sylvester, A.W., Smith, L., and Freeling, M. (1996). Aquisition of identity in
the developing leaf. Annu. Rev. Cell Dev. Biol. 12, 257- 304.
Szweykowska-Kulinska, Z., Jarmolowski, A., and Figlerowicz, M. (2003)
RNA interference and its role in the regulation of eucaryotic gene
expression. Acta Biochim. Pol. 50, 217 229.
Telfer, A., Bollman, K.M., and Poethig, R.S. (1997). Phase change and the
regulation of trichome distribution in Arabidopsis thaliana. Development
124, 645-654.
Tsuge, T., Tsukaya, H., and Uchimiya, H. (1996). Two independent and
polarized processes of cell elongation regulate leaf blade expansion in
Arabidopsis thaliana (L.) Heynh. Development 122, 1589–1600.
Tsukaya, H. (1995). Developmental genetics of leaf morphogenesis in
dicotyledonous plants. J. Plant Res. 108, 407–416.
Yamagchi, I., and Fukumoto, M. (1998). Alteration of hormone levels in
transgenic tobacco plants overexpressing the rice homeobox gene OSH1.
Plant Physiology 116, 471–476.
Vollbrecht, E., Veit, B., Sinha, N., and Hake, S. (1991). The developmental
gene Knotted-1 is a member of a maize homeobox gene family. Nature
350, 241-243.
Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R.,
and Takahashi, S. (2001). EMBRYONIC FLOWER2, a novel polycomb
group protein homolog, mediates shoot development and flowering in
Arabidopsis. Plant Cell 13, 2471–2481.
Zhang, H., and van Nocker S. (2002). The VERNALIZATION
INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING
LOCUS C. Plant J. 31, 663-673.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35936-
dc.description.abstract葉子是植物外表最顯著的器官,並且在光合作用、呼吸作用和氣
體交換扮演重要角色。然而到目前為止,關於葉部發育的細節並不十分清楚。因此,本實驗室使用正向遺傳學來分析在阿拉伯芥的T-DNA突變株庫中,具有葉部發育缺失突變株並找出影響葉型的基因。本實驗室利用T-DNA 嵌入載體 pPZP202:BAR:SK 來產生突變株並進行篩選,在本研究中我們從T2 的突變株庫找到一株具有捲曲葉型和延遲開花性狀的突變株,並命名為R1-2。將突變株和野生型作側交,發現只有在F2 子代才發現具有突變性狀的植株,因此推測R1-2 為一株隱性突變的植株。經由南方墨點法和IPCR 分析,在R1-2 突變株中有二個T-DNA,並以SK 相連的方式嵌在At3g22970 上游約2.5kb 處。經由RT-PCR 和北方墨點法比較野生型和R1-2 間At3g22970的表現得知:在R1-2 中At3g22970 表現量下降,因此推測R1-2 的性狀可能和At3g22970 表現量下降有關。At3g22970 是一個位在葉綠體並具有DUF506 區域的表現蛋白,在阿拉伯芥中共有十四個基因具有此種區域,到目前為止依然不知其功能。使用RT-PCR 和北方墨點法可發現At3g22970 的表現在一天中具有韻律性,而且在全株植物的器官均可表現,特別在花部表現最多。然而對於At3g22970 的功能依然不了解,因此我們觀察over-expression 和 knock-out 的突變株來了解At3g22970 在植物的生長發育中扮演何種功能。而在這些over-expression 轉殖株中, 有些轉殖株的性狀和野生型相同,有些轉殖株則具有開花延遲的性狀並降低At3g22970 的表現量, 我們推測具有開花延遲性狀的over-expression 轉殖株可能是由於大量表現At3g22970 進而共同抑制其表現,因此產生延遲開花的性狀。在另一方面,knock-out 的突變株也有一株具有延遲開花的性狀。由以上結果可知,At3g22970可能扮演某種角色在開花時間的控制上。
zh_TW
dc.description.abstractLeaves are the most noticeable plant organs and play important roles in photosynthesis, respiration and gas exchange. However, the details of leaf development remain unclear. Therefore, our laboratory used forward genetics
to identify the mutants with leaf development defect from T-DNA tagging pools in Arabidopsis. We use a T-DNA tagging vector, pPZP202: BAR: SK, to generate mutants and to screen for morphological mutants. In this study, we have identified a mutant, R1-2, which were selected in the T2 generation, with curled leaves and delayed flowering phenotypes. After R1-2 was crossed to the WT, none of the R1-2 phenotypes was observed in the F1 but were found in the F2 population. Therefore, it was suggested that R1-2 was a recessive mutant. Southern blotting analysis and inversed PCR identified two T-DNA linked together and inserted in the 2.5kb upstream of the At3g22970. Using RT-PCR and Northern blotting assay, we showed that the transcripts of At3g22970 were down-regulated in mutant, implicating that the phenotypes of R1-2 may be resulted from down-regulation of At3g22970. At3g22970 was predicted as a protein containing DUF506 domain and located in the chloroplast. There are 14 genes that contain DUF506 domain in Arabidopsis thaliana and all with unknown function. Using RT-PCR and Northern blotting assay, it was detected that the expression of At3g22970 appeared rhythmic, and expressed in the whole plant, especially in flowers. However, the function of At3g22970 is still unknown. We observe the phenotype of the transgenic plants by over-expressing or knock-outing the At3g22970 to address its function in Arabidopsis. Among these over-expression lines, some lines with delayed flowering phenotype had
reduced expression of At3g22970, but others were the same as WT. The correlation between delayed flowering time phenotype and reduced expression of At3g22970, indicating that the phenotype was caused by co-suppression of the over-expressed At3g22970. Additionally, one of the
SALK knock-out lines, SALK-085910, also exhibited a delayed flowering phenotype. Therefore, At3g22970 might play a role to control flowering time.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:48:27Z (GMT). No. of bitstreams: 1
ntu-94-R92b42005-1.pdf: 2518038 bytes, checksum: bef0bcd46d17711822327cc179912a7d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract in Chinese ------------------------------------- I
Abstract in English ------------------------------------ II
Abbreviations ------------------------------------------ IV
Introduction
Leaf development -----------------------------------------1
SAM and organogenesis: leaf initiation -------------------1
Establishment of leaf polarity ---------------------------3
Cell division and cell expansion -------------------------4
Hormone and leaf development -----------------------------5
miRNA and leaf devlopment --------------------------------6
Other factors that affect Leaf development ---------------7
Transition from vegetative to reproductive phase ---------8
Functional study of T-DNA insertional mutants in Arabidopsis ----------------------------------------------9
Materials and Methods
T-DNA tagging screening ---------------------------------12
Southern blotting analysis ------------------------------12
Total RNA isolation and Northern blotting analysis ------12
IPCR (Inverse PCR ) identification of the T-DNA flanking sequence ------------------------------------------------13
RT-PCR (reverse transcription-PCR) ----------------------14
Plasmid constructs --------------------------------------14
Plant transformation ------------------------------------15
Transient expression into tobacco protoplasts -----------16
Results
1. Characterization of the R1-2 mutant ------------------17
2. Characterization and Isolation of the flanking sequence of T-DNA insertion by using Southern blotting and IPCR --18
3. Molecular characterization of the At3g22970 gene and DUF506 gene family --------------------------------------18
4. Subcellular localization of the At3g22970 protein ----19
5. Expression of the At3g22970 displays a rhythm with the light/dark cycles ---------------------------------------20
6. Tissue-specific expression of the At3g22970 ----------20
7. Phenotypes of the At3g22970 T-DNA knock-out Lines ----21
8. Over-expression of At3g22970 in the WT and the R1-2 --21
Discussion
1. Down-regulation of the At3g22970 in R1-2 -------------23
2.At3g22970 may play a role in seed development ---------24
3. At3g22970 expression in wild-type plants and photoperiodic flowering ---------------------------------24
4. The leaves phenotype of R1-2, knock-out line (SALK-085910) and over-expression lines -----------------------25
5. At3g22970 may play a role to control flowering time --26
Figures -------------------------------------------------28
References ----------------------------------------------43
Appendixes ----------------------------------------------50
dc.language.isoen
dc.title具有捲曲葉型和延遲開花性狀的T-DNA 插入突變株之功能性基因研究zh_TW
dc.titleFunctional study of a T-DNA insertional mutant with curled
leaves and delayed flowering in Arabidopsis thaliana
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林秋榮,葉開溫,吳素幸,謝旭亮
dc.subject.keyword捲曲&#63854,型,延遲開花,T-DNA,突變株,阿拉伯芥,zh_TW
dc.subject.keywordT-DNA,mutant,curled leaves,delayed flowering,Arabidopsis,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved